Sarah S. Bacus
Quintiles
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sarah S. Bacus.
Cell | 1992
Duanzhi Wen; Elior Peles; Rod Cupples; Sidney V. Suggs; Sarah S. Bacus; Yi Luo; Geraldine Trail; Sylvia Hu; Scott M. Silbiger; Rachel Ben Levy; Raymond A. Koski; Hsieng S. Lu; Yosef Yarden
We recently reported that a 44 kd glycoprotein secreted by transformed fibroblasts stimulates tyrosine phosphorylation of the product of the neu proto-oncogene and induces differentiation of mammary tumor cells to milk-producing, growth-arrested cells. A partial amino acid sequence of the protein, termed Neu differentiation factor (NDF), enabled cloning of the corresponding complementary DNA. The deduced structure of the precursor of NDF indicated that it is a transmembrane protein whose extracellular portion contains an EGF-like domain that probably functions as a receptor recognition site. In addition, the ectodomain contains one immunoglobulin homology unit. Despite the lack of a recognizable hydrophobic signal peptide at the N-terminus, a recombinant NDF, like the natural molecule, is released into the medium of transfected COS-7 cells in a biologically active form. Northern blot analysis indicated the existence of several NDF transcripts, the major ones being 1.8, 2.6, and 6.7 kb in size. Transformation by the ras oncogene dramatically elevated the expression of NDF in fibroblasts.
Cell | 1992
Elior Peles; Sarah S. Bacus; Raymond A. Koski; Hsieng S. Lu; Duanzhi Wen; Steven G. Ogden; Rachel Ben Levy; Yosef Yarden
The neu/HER-2 proto-oncogene (also called erbB-2) encodes a transmembrane glycoprotein related to the epidermal growth factor receptor. We have purified to homogeneity a 44 kd glycoprotein from the medium of ras-transformed cells that stimulates phosphorylation of the Neu protein and retains activity after elution from the polyacrylamide gel. The protein is active at picomolar concentrations and displays a novel N-terminal sequence. Cross-linking experiments with radiolabeled p44 result in specific labeling of Neu, indicating that p44 is a ligand for Neu or a related receptor. The purified protein induces phenotypic differentiation of cultured human breast cancer cells, including altered morphology and synthesis of milk components. This is accompanied by an increase in nuclear area, inhibition of cell growth (probably by cell cycle arrest at the late S or the G2/M phases), and induction of DNA polyploidy. We propose the name Neu differentiation factor (NDF) for p44.
Oncogene | 2001
Sarah S. Bacus; Andrei V. Gudkov; Michael Lowe; Ljuba Lyass; Yuval Yung; Andrei P. Komarov; Khandan Keyomarsi; Yosef Yarden; Rony Seger
The anti-cancer agent paclitaxel (Taxol) stabilizes microtubules leading to G2/M cell cycle arrest and apoptotic cell death. In order to analyse the molecular mechanisms of Taxol-induced cytotoxicity, we studied the involvement of mitogen-activated protein kinases (MAPK) ERK and p38 as well as the p53 pathways in Taxol-induced apoptosis. The human breast carcinoma cell line MCF7 and its derivatives, MCF7/HER-2 and MDD2, were used in the study. We found that Taxol treatment strongly activated ERK, p38 MAP kinase and p53 in MAP kinase MCF7 cells prior to apoptosis. PD98059 or SB203580, specific inhibitors of ERK and p38 kinase activities, significantly decreased apoptosis, leaving the surviving cells arrested in G2/M. These inhibitors did not significantly affect Taxol-induced alterations in the cell cycle regulatory proteins Rb, p53, p21/Waf1 and Cdk-2. In addition, inactivation of p53 did not affect cellular sensitivity to Taxol killing. However, cells with inactivated p53, unlike cells harboring wild type p53, failed to arrest in G2/M after treatment with Taxol and continued to divide or go into apoptosis. Our data show that both ERK and p38 MAP kinase cascades are essential for apoptotic response to Taxol-induced cellular killing and are independent of p53 activity. However, p53 may serve as a survival factor in breast carcinoma cells treated with Taxol by blocking cells in G2/M phase of the cell cycle.
Journal of Clinical Oncology | 2005
Neil L. Spector; Wenle Xia; H. A. Burris; Herbert Hurwitz; E. Claire Dees; Afshin Dowlati; Bert H. O'Neil; Beth Overmoyer; Paul K. Marcom; Kimberly L. Blackwell; Deborah A. Smith; Kevin M. Koch; Andrew G. Stead; Steven Mangum; Matthew J. Ellis; Leihua Liu; Albert Man; Troy Bremer; Jennifer L. Harris; Sarah S. Bacus
PURPOSE This was a pilot study to assess the biologic effects of lapatinib on various tumor growth/survival pathways in patients with advanced ErbB1 and/or ErbB2-overexpressing solid malignancies. PATIENTS AND METHODS Heavily pretreated patients with metastatic cancers overexpressing ErbB2 and/or expressing ErbB1 were randomly assigned to one of five dose cohorts of lapatinib (GW572016) administered orally once daily continuously. The biologic effects of lapatinib on tumor growth and survival pathways were assessed in tumor biopsies obtained before and after 21 days of therapy. Clinical response was determined at 8 weeks. RESULTS Sequential tumor biopsies from 33 patients were examined. Partial responses occurred in four patients with breast cancer, and disease stabilization occurred in 11 others with various malignancies. Responders exhibited variable levels of inhibition of p-ErbB1, p-ErbB2, p-Erk1/2, p-Akt, cyclin D1, and transforming growth factor alpha. Even some nonresponders demonstrated varying degrees of biomarker inhibition. Increased tumor cell apoptosis (TUNEL) occurred in patients with evidence of tumor regression but not in nonresponders (progressive disease). Clinical response was associated with a pretreatment TUNEL score > 0 and increased pretreatment expression of ErbB2, p-ErbB2, Erk1/2, p-Erk1/2, insulin-like growth factor receptor-1, p70 S6 kinase, and transforming growth factor alpha compared with nonresponders. CONCLUSION Lapatinib exhibited preliminary evidence of biologic and clinical activity in ErbB1 and/or ErbB2-overexpressing tumors. However, the limited sample size of this study and the variability of the biologic endpoints suggest that further work is needed to prioritize biomarkers for disease-directed studies, and underscores the need for improved trial design strategies in early clinical studies of targeted agents.
Proceedings of the National Academy of Sciences of the United States of America | 2006
Wenle Xia; Sarah S. Bacus; Priti S. Hegde; Intisar Husain; Jay C. Strum; Leihua Liu; Georgina Paulazzo; Ljuba Lyass; Patricia Trusk; Jason Hill; Jennifer L. Harris; Neil L. Spector
The development of acquired resistance to ErbB2 tyrosine kinase inhibitors limits the clinical efficacy of this class of cancer therapeutics. Little is known about the mechanism(s) of acquired resistance to these agents. Here we establish a model of acquired resistance to N-{3-chloro-4-[(3-fluorobenzyl) oxy]phenyl}-6-[5-({[2 (methylsulfonyl)ethyl]amino}methyl)-2-furyl]-4-quinazolinamine (lapatinib), an inhibitor of ErbB2 and ErbB1 tyrosine kinases by chronically exposing lapatinib-sensitive ErbB2-overexpressing breast cancer cells to lapatinib, simulating the clinic where lapatinib is administered on a daily chronic basis. Analysis of baseline gene expression in acquired lapatinib-resistant and parental cells indicates estrogen receptor (ER) signaling involvement in the development of resistance. Using gene interference, we confirm that acquired resistance to lapatinib is mediated by a switch in cell survival dependence and regulation of a key antiapoptotic mediator from ErbB2 alone to codependence upon ER and ErbB2 rather than loss of ErbB2 expression or insensitivity of ErbB2 signaling to lapatinib. Increased ER signaling in response to lapatinib is enhanced by the activation of factors facilitating the transcriptional activity of ER, notably FOXO3a and caveolin-1. Importantly, we confirm that lapatinib induces ER signaling in tumor biopsies from patients with ErbB2-overexpressing breast cancers receiving lapatinib therapy. These findings provided the rationale for preventing the development of acquired resistance by simultaneously inhibiting both ER and ErbB2 signaling pathways. Establishing clinically relevant models of acquired resistance to ErbB2 kinase inhibitors will enhance therapeutic strategies to improve clinical outcomes for patients with ErbB2-overexpressing breast cancers.
The EMBO Journal | 1997
Elena A. Komarova; Mikhail V. Chernov; Roberta Franks; Kaihua Wang; Gabriella Armin; Carolyn R. Zelnick; Dot Chin; Sarah S. Bacus; George R. Stark; Andrei V. Gudkov
To analyze the involvement of p53‐dependent transcriptional activation in normal development and in response to DNA damage in vivo, we created transgenic mice with a lacZ reporter gene under the control of a p53‐responsive promoter. Five independent strains showed similar patterns of transgene expression. In untreated animals, lacZ expression was limited to the developing nervous system of embryos and newborn mice and was strongly decreased in the adult brain. γ‐irradiation or adriamycin treatment induced lacZ expression in the majority of cells of early embryos and in the spleen, thymus and small intestine in adult mice. Transgene expression was p53 dependent and coincided with the sites of strong p53 accumulation. The lacZ‐expressing tissues and early embryos, unlike other adult tissues and late embryos, are characterized by high levels of p53 mRNA expression and respond to DNA damage by massive apoptotic cell death. Analysis of p53‐null mice showed that this apoptosis is p53 dependent. These data suggest that p53 activity, monitored by the reporter lacZ transgene, is the determinant of radiation and drug sensitivity in vivo and indicate the importance of tissue and stage specificity of p53 regulation at the level of mRNA expression.
Journal of Biological Chemistry | 1998
Maya Shelly; Ronit Pinkas-Kramarski; Bradley C. Guarino; Hadassa Waterman; Ling-Mei Wang; Ljuba Lyass; Mauricio Alimandi; Angera Kuo; Sarah S. Bacus; Jacalyn H. Pierce; Glenn C. Andrews; Yosef Yarden
The ErbB signaling network consists of four transmembrane receptor tyrosine kinases and more than a dozen ligands sharing an epidermal growth factor (EGF) motif. The multiplicity of ErbB-specific ligands is incompletely understood in terms of signal specificity because all ErbB molecules signal through partially overlapping pathways. Here we addressed the action of epiregulin, a recently isolated ligand of ErbB-1. By employing a set of factor-dependent cell lines engineered to express individual ErbBs or their combinations, we found that epiregulin is the broadest specificity EGF-like ligand so far characterized: not only does it stimulate homodimers of both ErbB-1 and ErbB-4, it also activates all possible heterodimeric ErbB complexes. Consistent with its relaxed selectivity, epiregulin binds the various receptor combinations with an affinity that is approximately 100-fold lower than the affinity of ligands with more stringent selectivity, including EGF. Nevertheless, epiregulin’s action upon most receptor combinations transmits a more potent mitogenic signal than does EGF. This remarkable discrepancy between binding affinity and bioactivity is permitted by a mechanism that prevents receptor down-regulation, and results in a weak, but prolonged, state of receptor activation.
Nature Cell Biology | 2007
Menachem Katz; Ido Amit; Tal Shay; Sílvia Carvalho; Sara Lavi; Fernanda Milanezi; Ljuba Lyass; Ninette Amariglio; Jasmine Jacob-Hirsch; Nir Ben-Chetrit; Gabi Tarcic; Moshit Lindzen; Roi Avraham; Yi-Chun Liao; Patricia Trusk; Asya Lyass; Gideon Rechavi; Neil L. Spector; Su Hao Lo; Fernando Schmitt; Sarah S. Bacus; Yosef Yarden
Cell migration driven by the epidermal growth factor receptor (EGFR) propels morphogenesis and involves reorganization of the actin cytoskeleton. Although de novo transcription precedes migration, transcript identity remains largely unknown. Through their actin-binding domains, tensins link the cytoskeleton to integrin-based adhesion sites. Here we report that EGF downregulates tensin-3 expression, and concomitantly upregulates cten, a tensin family member that lacks the actin-binding domain. Knockdown of cten or tensin-3, respectively, impairs or enhances mammary cell migration. Furthermore, cten displaces tensin-3 from the cytoplasmic tail of integrin β1, thereby instigating actin fibre disassembly. In invasive breast cancer, cten expression correlates not only with high EGFR and HER2, but also with metastasis to lymph nodes. Moreover, treatment of inflammatory breast cancer patients with an EGFR/HER2 dual-specificity kinase inhibitor significantly downregulated cten expression. In conclusion, a transcriptional tensin-3–cten switch may contribute to the metastasis of mammary cancer.
Clinical Cancer Research | 2010
Massimo Cristofanilli; Vicente Valero; Aroop Mangalik; Melanie Royce; Ian Rabinowitz; Francis P. Arena; Joan Kroener; Elizabeth Curcio; Claire Watkins; Sarah S. Bacus; Elsa M. Cora; Elizabeth Anderson; Patrick Magill
Purpose: This phase II randomized trial evaluated the efficacy and tolerability of anastrozole combined with gefitinib or anastrozole with placebo in women with hormone receptor–positive metastatic breast cancer (MBC). Experimental Design: Postmenopausal women with hormone receptor–positive measurable or evaluable MBC who had not received prior endocrine therapy for this disease stage or who developed metastatic disease during/after adjuvant tamoxifen were eligible. The primary response variable was progression-free survival (PFS) and secondary response variables included clinical benefit rate, objective response rate, overall survival, safety and tolerability, and pharmacokinetics. Tumor biomarker evaluation was an exploratory objective. Results: Forty-three patients were randomized to anastrozole plus gefitinib and 50 patients were randomized to anastrozole plus placebo of a planned total of 174 patients (enrollment was prematurely discontinued due to slow recruitment). PFS for patients receiving the combination of anastrozole and gefitinib was longer than for patients receiving anastrozole plus placebo [hazard ratio (gefitinib/placebo), 0.55; 95% confidence interval, 0.32-0.94; median PFS, 14.7 versus 8.4 months]. The clinical benefit rate was 49% versus 34%, and the objective response rate was 2% versus 12% with anastrozole plus gefitinib and anastrozole plus placebo, respectively. No evidence of interaction between baseline biomarker levels and relative treatment effect was found. No unexpected adverse events were observed. Conclusion: This small randomized study showed that anastrozole in combination with gefitinib is associated with a marked advantage in PFS compared with anastrozole plus placebo, and that the combination was tolerated in postmenopausal women with hormone receptor–positive MBC. Further investigation of epidermal growth factor receptor inhibition in combination with endocrine therapy may be warranted. Clin Cancer Res; 16(6); 1904–14
Cancer Research | 2007
Wenle Xia; Intisar Husain; Leihua Liu; Sarah S. Bacus; Shermini Saini; Janice Spohn; Karen Pry; Ron E. Westlund; Steven H. Stein; Neil L. Spector
Trastuzumab antitumor activity in ErbB2-overexpressing breast cancers seems to be dependent upon the presence of phosphatase and tensin homologue deleted on chromosome 10 (PTEN), a phosphatase that dampens phosphatidylinositol 3-kinase-Akt signaling. Consequently, PTEN deficiency, which occurs in 50% of breast cancers, predicts for resistance to trastuzumab monotherapy. Here, we show that lapatinib, a small-molecule inhibitor of ErbB1 and ErbB2 tyrosine kinases, exerts its antitumor activity in a PTEN-independent manner. Steady-state phosphorylated ErbB2 (p-ErbB2) and p-Akt (S473) protein levels were inhibited within 30 min following lapatinib but not in response to trastuzumab in BT474 and Au565 cells (two ErbB2-overexpressing breast cancer cell lines that are sensitive to the proapoptotic effects of lapatinib). Whereas trastuzumab reportedly inhibits SRC phosphorylation (Y416), which in turn reduced SRC-ErbB2 protein interactions, lapatinib had no effect on either variable. To assess the potential functional role that PTEN might play in lapatinib antitumor activity, we selectively knocked down PTEN in BT474 and Au565 cells using small interfering RNA transfection. Loss of PTEN did not affect induction of tumor cell apoptosis by lapatinib in either cell line. In addition, lapatinib inhibited Akt phosphorylation in MDA-MB-468 cells, an ErbB1-expressing/ErbB2 non-overexpressing breast cancer line, despite their PTEN-null status. Moreover, patients with ErbB2-overexpressing inflammatory breast cancers responded to lapatinib monotherapy regardless of PTEN status. Thus, lapatinib seems to exert its antitumor activity in ErbB2-overexpressing breast cancers in a PTEN-independent manner. These data emphasize the importance of assessing PTEN status in tumors when selecting ErbB2-targeted therapies in patients with breast cancer.