Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sarah S. Cherian is active.

Publication


Featured researches published by Sarah S. Cherian.


PLOS ONE | 2010

Genetic Characterization of the Influenza A Pandemic (H1N1) 2009 Virus Isolates from India

Varsha A. Potdar; Mandeep S. Chadha; Santosh Jadhav; Jayati Mullick; Sarah S. Cherian; Akhilesh C. Mishra

Background The Influenza A pandemic H1N1 2009 (H1N1pdm) virus appeared in India in May 2009 and thereafter outbreaks with considerable morbidity and mortality have been reported from many parts of the country. Continuous monitoring of the genetic makeup of the virus is essential to understand its evolution within the country in relation to global diversification and to track the mutations that may affect the behavior of the virus. Methods H1N1pdm viruses were isolated from both recovered and fatal cases representing major cities and sequenced. Phylogenetic analyses of six concatenated whole genomes and the hemagglutinin (HA) gene of seven more isolates from May-September 2009 was performed with reference to 685 whole genomes of global isolates available as of November 24, 2009. Molecular characterization of all the 8 segments was carried out for known pathogenic markers. Results The first isolate of May 2009 belonged to clade 5. Although clade 7 was the dominant H1N1pdm lineage in India, both clades 6 and 7 were found to be co-circulating. The neuraminidase of all the Indian isolates possessed H275, the marker for sensitivity to the neuraminidase inhibitor Oseltamivir. Some of the mutations in HA are at or in the vicinity of antigenic sites and may therefore be of possible antigenic significance. Among these a D222G mutation in the HA receptor binding domain was found in two of the eight Indian isolates obtained from fatal cases. Conclusions The majority of the 13 Indian isolates grouped in the globally most widely circulating H1N1pdm clade 7. Further, correlations of the mutations specific to clade 7 Indian isolates to viral fitness and adaptability in the country remains to be understood. The D222G mutation in HA from isolates of fatal cases needs to be studied for pathogenicity.


PLOS ONE | 2009

Characterization of the Influenza A H5N1 Viruses of the 2008-09 Outbreaks in India Reveals a Third Introduction and Possible Endemicity

Alok K. Chakrabarti; Shailesh D. Pawar; Sarah S. Cherian; Santosh S Koratkar; Santosh Jadhav; Biswajoy Pal; Satish Raut; Vishal Thite; Sadhana S. Kode; Sachin S. Keng; Bestin J. Payyapilly; Jayati Mullick; Akhilesh C. Mishra

Widespread infection of highly pathogenic avian influenza A H5N1 was reported from backyard and commercial poultry in West Bengal (WB), an eastern state of India in early 2008. Infection gradually spread to Tripura, Assam and Sikkim, the northeastern states, with 70 outbreaks reported between January 2008 and May 2009. Whole genome sequence analysis of three isolates from WB, one isolate from Tripura along with the analysis of hemagglutinin (HA) and neuraminidase (NA) genes of 17 other isolates was performed during this study. In the HA gene phylogenetic tree, all the 2008-09 Indian isolates belonged to EMA3 sublineage of clade 2.2. The closest phylogenetic relationship was found to be with the 2007-09 isolates from Bangladesh and not with the earlier 2006 and 2007 Indian isolates implying a third introduction into the country. The receptor-binding pocket of HA1 of two isolates from WB showed S221P mutation, one of the markers predicted to be associated with human receptor specificity. Two substitutions E119A (2 isolates of WB) and N294S (2 other isolates of WB) known to confer resistance to NA inhibitors were observed in the active site of neuraminidase. Several additional mutations were observed within the 2008-09 Indian isolates indicating genetic diversification. Overall, the study is indicative of a possible endemicity in the eastern and northeastern parts of the country, demanding active surveillance specifically in view of the critical mutations that have been observed in the influenza A H5N1 viruses.


Journal of General Virology | 2010

Evolution, dispersal and replacement of American genotype dengue type 2 viruses in India (1956-2005): selection pressure and molecular clock analyses.

Sandeep Kumar; J.A. Patil; D. Cecilia; Sarah S. Cherian; Pradip V Barde; Atul M. Walimbe; Pragya D. Yadav; Prasanna N. Yergolkar; P.S. Shah; Vasant S. Padbidri; Akhilesh C. Mishra; Devendra T. Mourya

This study reports the phylogeny, selection pressure, genotype replacement and molecular clock analyses of many previously unstudied dengue type 2 virus (DENV-2) strains, isolated in India over a time span of almost 50 years (1956-2005). Analysis of complete envelope (E) gene sequences of 37 strains of DENV-2 from India, together with globally representative strains, revealed that the American genotype, which circulated predominantly in India during the pre-1971 period, was then replaced by the Cosmopolitan genotype. Two previously unreported amino acid residues, one in the American (402I) and one in the Cosmopolitan (126K) genotypes, known to be involved functionally in the cellular tropism of the virus, were shown to be under positive selection pressure. The rate of nucleotide substitution estimated for DENV-2 was 6.5x10(-4) substitutions per site year(-1), which is comparable with earlier estimates. The time to the most recent common ancestor of the pre-1971 Indian strains and the American genotype was estimated to be between 73 and 100 years (1905-1932), which correlates with the historical record of traffic between India and South America and suggests transportation of the virus from the Americas. Post-1971 Indian isolates formed a separate subclade within the Cosmopolitan genotype. The estimated time to the most recent common ancestor of the Indian Cosmopolitan strains was about 47 years, with further estimates indicating the migration of DENV-2 from India to countries across the Indian ocean between 1955 and 1966. Overall, the present study increases our understanding of the events leading to the establishment and dispersal of the two genotypes in India.


BioMed Research International | 2014

Antiviral Perspectives for Chikungunya Virus

Deepti Parashar; Sarah S. Cherian

Chikungunya virus (CHIKV) is a mosquito-borne pathogen that has a major health impact in humans and causes acute febrile illness in humans accompanied by joint pains and, in many cases, persistent arthralgia lasting for weeks to years. CHIKV reemerged in 2005-2006 in several parts of the Indian Ocean islands and India after a gap of 32 years, causing millions of cases. The re-emergence of CHIKV has also resulted in numerous outbreaks in several countries in the eastern hemisphere, with a threat to further expand in the near future. However, there is no vaccine against CHIKV infection licensed for human use, and therapy for CHIKV infection is still mainly limited to supportive care as antiviral agents are yet in different stages of testing or development. In this review we explore the different perspectives for chikungunya treatment and the effectiveness of these treatment regimens and discuss the scope for future directions.


Infection, Genetics and Evolution | 2011

Evolutionary dynamics of the American African genotype of dengue type 1 virus in India (1962–2005)

J.A. Patil; Sarah S. Cherian; Atul M. Walimbe; B.R. Patil; P.S. Sathe; P.S. Shah; D. Cecilia

Dengue is a major health problem in India with all four serotypes represented. Recently there has been an increase in the occurrence of dengue-1 outbreaks. It is possible that there have been changes in the genetics of dengue virus-1 (DENV-1), either by fresh introductions or by evolution in situ. The studies on DENV-1 evolution so far have no Indian sequences included. To gain insight into the dynamics of DENV-1 in India, the envelope (E) gene of thirteen virus isolates representative of the period 1962-2005 were sequenced and analyzed together with the available sequences of 40 globally representative isolates. All the Indian DENV-1 isolates were found to belong to the American African (AMAF) genotype. With the addition of 13 Indian isolates, the AMAF genotype can now be called Cosmopolitan. The Indian isolates were distributed into four lineages, India I, II, III and the Africa lineage, now called Afro-India. Of these, India III was the oldest and extinct lineage; the Afro-India was a transient lineage while India I, imported from Singapore and India II, evolving in situ, were the circulating lineages. Despite the extinction and introduction of lineages, no specific codon site was observed to be under selection pressure. The rate of nucleotide substitution estimated for DENV-1 was 6.5 × 10(-4) substitutions/site/year, and the time to the most recent common ancestor (tMRCA) was estimated to be 78-180 years (1825-1925), similar to previous estimates. The tMRCA for the AMAF/Cosmopolitan genotype was 56-98 years (1907-1949), a period that covers World War I and II. The two imports from Africa (1953-1968) and Singapore (1964-1975) and an export to the Americas (1955-1965) prove that there have been changes in the lineage of the DENV-1 viruses circulating in India which has contributed to the global dynamics of DENV-1 evolution and perhaps to the changing epidemiology of dengue in India.


Infection, Genetics and Evolution | 2013

Genetic characterization and molecular clock analyses of the Crimean-Congo hemorrhagic fever virus from human and ticks in India, 2010–2011

Pragya D. Yadav; Sarah S. Cherian; Divya Zawar; Prasad Kokate; Rashmi S. Gunjikar; Santosh Jadhav; Akhilesh C. Mishra; Devendra T. Mourya

A nosocomial outbreak of Crimean Congo hemorrhagic fever (CCHF) was reported among humans in Ahmadabad district, Gujarat, India during January, 2011. In the present study we provide the complete genomic sequences of four CCHFV isolates derived from two human patients and two pools of Hyalomma anatolicum ticks during the period of this outbreak and the complete S segment sequence of two retrospective human serum samples, positive for CCHFV in 2010. Sequence-based molecular characterization of the Indian CCHFV showed that they possessed the functional motifs known to occur in the S, M and L gene segment products as in other CCHF viruses. The S segment of the six Indian CCHF viruses showed 99.8% nucleotide identity. Notably both tick isolates shared 100% nucleotide identity with one of the Indian human isolates of 2011. Phylogenetic analysis based on the S segment demonstrated that the Indian CCHFV isolates formed a distinct cluster in the Asian-Middle East group IV of CCHF viruses. The S segment was closest to a Tajikistan strain TADJ/HU8966 of 1990 (98.5% nucleotide identity) and was of South-Asia 2 type while the M segment was of type M2. Both M and L segments were closest to an Afghanistan strain Afg09-2990 of 2009 (93% and 98% nucleotide identity, respectively). The Indian isolates were thus identified as a South-Asia 2/M2 far-east virus combination and the differing parental origin in the S and L/M segments is suggestive that it may be an intra-genotypic reassortant. Molecular clock studies further revealed that the ancestry of the viruses was not very recent and dated back to about 33years on the basis of the S segment while it was about 15years based on the M segment. Thus though the 2011 outbreak may not have resulted from a very recent introduction, considering that so far there is no evidence of multiple circulating strains in the country, the possibility of a recent re-introduction of the virus from any of the neighboring countries cannot be ruled out. The study thus warrants the need for continued surveillance and increased sampling of CCHFV in different parts of the country.


Virus Genes | 2010

An avian influenza A(H11N1) virus from a wild aquatic bird revealing a unique Eurasian-American genetic reassortment

Shailesh D. Pawar; Alok K. Chakrabarti; Sarah S. Cherian; Satish Pande; Madhuri Nanaware; Satish Raut; Biswajoy Pal; Santosh Jadhav; Sadhana S. Kode; Santosh S Koratkar; Vishal Thite; Akhilesh C. Mishra

Influenza surveillance in different wild bird populations is critical for understanding the persistence, transmission and evolution of these viruses. Avian influenza (AI) surveillance was undertaken in wild migratory and resident birds during the period 2007–2008, in view of the outbreaks of highly pathogenic AI (HPAI) H5N1 in poultry in India since 2006. In this study, we present the whole genome sequence data along with the genetic and virological characterization of an Influenza A(H11N1) virus isolated from wild aquatic bird for the first time from India. The virus was low pathogenicity and phylogenetic analysis revealed that it was distinct from reported H11N1 viruses. The hemagglutinin (HA) gene showed maximum similarity with A/semipalmatedsandpiper/Delaware/2109/2000 (H11N6) and A/shorebird/Delaware/236/2003(H11N9) while the neuraminidase (NA) gene showed maximum similarity with A/duck/Mongolia/540/2001(H1N1). The virus thus possessed an HA gene of the American lineage. The NA and other six genes were of the Eurasian lineage and showed closer relatedness to non-H11 viruses. Such a genetic reassortment is unique and interesting, though the pathways leading to its emergence and its future persistence in the avian reservoir is yet to be fully established.


Infection, Genetics and Evolution | 2009

Full length genomes of genotype IIIA hepatitis A virus strains (1995-2008) from India and estimates of the evolutionary rates and ages.

M.A. Kulkarni; Atul M. Walimbe; Sarah S. Cherian; Vidya A. Arankalle

With the changing epidemiology, outbreaks of Hepatitis A Virus (HAV) have been reported from different parts of India. To characterize HAV strains circulating in India (1995-2008), 6 full genome sequences of the predominant genotype, IIIA, were determined. Further, applying the Bayesian Markov Chain Monte Carlo (MCMC) framework to the full genomes of Indian HAV strains as well as other global strains (human as well as simian), we derived the mean nucleotide substitution rate and evolutionary timescales with emphasis on the age of genotype III and IIIA strains. The genomic length of all the 6 HAV isolates was 7464 nt excluding the poly A tract. Phylogenetic analysis confirmed that all the Indian isolates were close to Nor-21 (AJ299464) and HMH (AY644337) of subgenotype IIIA. The ORF of the isolates when compared within genotype III at amino acid level showed a highly conserved pattern. Under the best fit expansion population relaxed molecular clock model, the estimated mean substitution rate of the HAV full genomes (human and simian strains) was 1.73 x 10(-4) substitutions/site/year based on which the earliest transmission of HAV from simian to humans is estimated to have occurred about 3564 years ago. The mean substitution rate within human HAV full genomes under the same model was estimated to be 1.99 x 10(-4) substitutions/site/year. With this the mean age of genotype III strains was estimated to be 592 years while that of genotype IIIA was estimated to be 202 years. The time to the most common recent ancestor (tMRCA) of the Indian genotype IIIA isolates was calculated to be 116 years.


PLOS ONE | 2012

Whole Genomes of Chandipura Virus Isolates and Comparative Analysis with Other Rhabdoviruses

Sarah S. Cherian; Rashmi S. Gunjikar; Arpita Banerjee; Satyendra Kumar; Vidya A. Arankalle

The Chandipura virus (CHPV) belonging to the Vesiculovirus genus and Rhabdoviridae family, has recently been associated with a number of encephalitis epidemics, with high mortality in children, in different parts of India. No full length genome sequences of CHPV isolates were available in GenBank and little is known about the molecular markers for pathogenesis. In the present study, we provide the complete genomic sequences of four isolates from epidemics during 2003–2007. These sequences along with the deduced sequence of the prototype isolate of 1965 were analysed using phylogeny, motif search, homology modeling and epitope prediction methods. Comparison with other rhaboviruses was also done for functional extrapolations. All CHPV isolates clustered with the Isfahan virus and maintained several functional motifs of other rhabdoviruses. A notable difference with the prototype vesiculovirus, Vesicular Stomatitis Virus was in the L-domain flanking sequences of the M protein that are known to be crucial for interaction with host proteins. With respect to the prototype isolate, significant additional mutations were acquired in the 2003–2007 isolates. Several mutations in G mapped onto probable antigenic sites. A mutation in N mapped onto regions crucial for N-N interaction and a putative T-cell epitope. A mutation in the Casein kinase II phosphorylation site in P may attribute to increased rates of phosphorylation. Gene junction comparison revealed changes in the M-G junction of all the epidemic isolates that may have implications on read-through and gene transcription levels. The study can form the basis for further experimental verification and provide additional insights into the virulence determinants of the CHPV.


Virology Journal | 2009

A unique influenza A (H5N1) virus causing a focal poultry outbreak in 2007 in Manipur, India.

Akhilesh C. Mishra; Sarah S. Cherian; Alok K. Chakrabarti; Shailesh D. Pawar; Santosh Jadhav; Biswajoy Pal; Satish Raut; Santosh S Koratkar; Sadhana S. Kode

BackgroundA focal H5N1 outbreak in poultry was reported from Manipur, a north-eastern state, of India, in 2007. The aim of this study was to genetically characterize the Manipur isolate to understand the relationship with other H5N1 isolates and to trace the possible source of introduction of the virus into the country.ResultsCharacterization of the complete genome revealed that the virus belonged to clade 2.2. It was distinctly different from viruses of the three EMA sublineages of clade 2.2 but related to isolates from wild migratory waterfowl from Russia, China and Mongolia. The HA gene, had the cleavage site GERRRRKR, earlier reported in whooper swan isolates from Mongolia in 2005. A stop codon at position 29 in the PB1-F2 protein could have implications on the replication efficiency. The acquisition of polymorphisms as seen in recent isolates of 2005–07 from distinct geographical regions suggests the possibility of transportation of H5N1 viruses through migratory birds.ConclusionConsidering that all eight genes of the earlier Indian isolates belonged to the EMA3 sublineage and similar strains have not been reported from neighbouring countries of the subcontinent, it appears that the virus may have been introduced independently.

Collaboration


Dive into the Sarah S. Cherian's collaboration.

Top Co-Authors

Avatar

Akhilesh C. Mishra

National Institute of Virology

View shared research outputs
Top Co-Authors

Avatar

Santosh Jadhav

National Institute of Virology

View shared research outputs
Top Co-Authors

Avatar

Atul M. Walimbe

National Institute of Virology

View shared research outputs
Top Co-Authors

Avatar

Abhisek Kumar Behera

National Institute of Virology

View shared research outputs
Top Co-Authors

Avatar

D. Cecilia

National Institute of Virology

View shared research outputs
Top Co-Authors

Avatar

J.A. Patil

National Institute of Virology

View shared research outputs
Top Co-Authors

Avatar

Pratip Shil

National Institute of Virology

View shared research outputs
Top Co-Authors

Avatar

Shailesh D. Pawar

National Institute of Virology

View shared research outputs
Top Co-Authors

Avatar

Shobha D. Chitambar

National Institute of Virology

View shared research outputs
Top Co-Authors

Avatar

Vidya A. Arankalle

National Institute of Virology

View shared research outputs
Researchain Logo
Decentralizing Knowledge