Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sarah Sparrow is active.

Publication


Featured researches published by Sarah Sparrow.


Journal of the Atmospheric Sciences | 2004

Solar and QBO influences on the timing of stratospheric sudden warmings

Lesley J. Gray; Simon A. Crooks; Charlotte Pascoe; Sarah Sparrow; Michael Palmer

Abstract The interaction of the 11-yr solar cycle (SC) and the quasi-biennial oscillation (QBO) and their influence on the Northern Hemisphere (NH) polar vortex are studied using idealized model experiments and ECMWF Re-Analysis (ERA-40). In the model experiments, the sensitivity of the NH polar vortex to imposed easterlies at equatorial/subtropical latitudes over various height ranges is tested to explore the possible influence from zonal wind anomalies associated with the QBO and the 11-yr SC in those regions. The experiments show that the timing of the modeled stratospheric sudden warmings (SSWs) is sensitive to the imposed easterlies at the equator/subtropics. When easterlies are imposed in the equatorial or subtropical upper stratosphere, the onset of the SSWs is earlier. A mechanism is proposed in which zonal wind anomalies in the equatorial/subtropical upper stratosphere associated with the QBO and 11-yr SC either reinforce each other or cancel each other out. When they reinforce, as in Smin–QBO-ea...


Journal of Climate | 2010

The Impact of the State of the Troposphere on the Response to Stratospheric Heating in a Simplified GCM

Isla R. Simpson; Michael Blackburn; Joanna D. Haigh; Sarah Sparrow

Abstract Previous studies have made use of simplified general circulation models (sGCMs) to investigate the atmospheric response to various forcings. In particular, several studies have investigated the tropospheric response to changes in stratospheric temperature. This is potentially relevant for many climate forcings. Here the impact of changing the tropospheric climatology on the modeled response to perturbations in stratospheric temperature is investigated by the introduction of topography into the model and altering the tropospheric jet structure. The results highlight the need for very long integrations so as to determine accurately the magnitude of response. It is found that introducing topography into the model and thus removing the zonally symmetric nature of the model’s boundary conditions reduces the magnitude of response to stratospheric heating. However, this reduction is of comparable size to the variability in the magnitude of response between different ensemble members of the same 5000-day...


Geophysical Research Letters | 2015

Anthropogenic influence on the changing likelihood of an exceptionally warm summer in Texas, 2011

David E. Rupp; Sihan Li; Neil Massey; Sarah Sparrow; Philip W. Mote; Myles R. Allen

The impact of anthropogenic forcing on the probability of high mean summer temperatures being exceeded in Texas in the year 2011 was investigated using an atmospheric circulation model to simulate large ensembles of the world with 2011 level forcing and 5 “counterfactual” worlds under preindustrial forcing. In Texas, drought is a strong control on summer temperature, so an increased frequency in large precipitation deficits and/or soil moisture deficits that may result from anthropogenic forcing could magnify the regional footprint of global warming. However, no simulated increase in the frequency of large precipitation deficits, or of soil moisture deficits, was detected from preindustrial to year 2011 conditions. Despite the lack of enhancement to warming via these potential changes in the hydrological cycle, the likelihood of a given unusually high summer temperature being exceeded was simulated to be about 10 times greater due to anthropogenic emissions.


Journal of the Atmospheric Sciences | 2009

Annular Variability and Eddy–Zonal Flow Interactions in a Simplified Atmospheric GCM. Part I: Characterization of High- and Low-Frequency Behavior

Sarah Sparrow; Michael Blackburn; Joanna D. Haigh

Abstract Experiments have been performed using a simplified, Newtonian forced, global circulation model to investigate how variability of the tropospheric jet can be characterized by examining the combined fluctuations of the two leading modes of annular variability. Eddy forcing of this variability is analyzed in the phase space of the leading modes using the vertically integrated momentum budget. The nature of the annular variability and eddy forcing depends on the time scale. At low frequencies the zonal flow and baroclinic eddies are in quasi equilibrium and anomalies propagate poleward. The eddies are shown primarily to reinforce the anomalous state and are closely balanced by the linear damping, leaving slow evolution as a residual. At high frequencies the flow is strongly evolving and anomalies are initiated on the poleward side of the tropospheric jet and propagate equatorward. The eddies are shown to drive this evolution strongly: eddy location and amplitude reflect the past baroclinicity, while ...


Earth’s Future | 2018

Biogeophysical Impacts of Land‐Use Change on Climate Extremes in Low‐Emission Scenarios: Results From HAPPI‐Land

Annette L. Hirsch; Benoit P. Guillod; Sonia I. Seneviratne; Urs Beyerle; Lena R. Boysen; Victor Brovkin; Edouard L. Davin; Jonathan C. Doelman; Hyungjun Kim; Daniel Mitchell; Tomoko Nitta; Hideo Shiogama; Sarah Sparrow; Elke Stehfest; Detlef P. van Vuuren; Simon Wilson

Abstract The impacts of land use have been shown to have considerable influence on regional climate. With the recent international commitment to limit global warming to well below 2°C, emission reductions need to be ambitious and could involve major land‐use change (LUC). Land‐based mitigation efforts to curb emissions growth include increasing terrestrial carbon sequestration through reforestation, or the adoption of bioenergy crops. These activities influence local climate through biogeophysical feedbacks, however, it is uncertain how important they are for a 1.5° climate target. This was the motivation for HAPPI‐Land: the half a degree additional warming, prognosis, and projected impacts—land‐use scenario experiment. Using four Earth system models, we present the first multimodel results from HAPPI‐Land and demonstrate the critical role of land use for understanding the characteristics of regional climate extremes in low‐emission scenarios. In particular, our results show that changes in temperature extremes due to LUC are comparable in magnitude to changes arising from half a degree of global warming. We also demonstrate that LUC contributes to more than 20% of the change in temperature extremes for large land areas concentrated over the Northern Hemisphere. However, we also identify sources of uncertainty that influence the multimodel consensus of our results including how LUC is implemented and the corresponding biogeophysical feedbacks that perturb climate. Therefore, our results highlight the urgent need to resolve the challenges in implementing LUC across models to quantify the impacts and consider how LUC contributes to regional changes in extremes associated with sustainable development pathways.


Advances in Atmospheric Sciences | 2018

Impacts of Anthropogenic Forcings and El Niño on Chinese Extreme Temperatures

Nicolas Freychet; Sarah Sparrow; Simon F. B. Tett; Michael J. Mineter; Gabriele C. Hegerl; David Wallom

This study investigates the potential influences of anthropogenic forcings and natural variability on the risk of summer extreme temperatures over China. We use three multi-thousand-member ensemble simulations with different forcings (with or without anthropogenic greenhouse gases and aerosol emissions) to evaluate the human impact, and with sea surface temperature patterns from three different years around the El Niño–Southern Oscillation (ENSO) 2015/16 event (years 2014, 2015 and 2016) to evaluate the impact of natural variability. A generalized extreme value (GEV) distribution is used to fit the ensemble results. Based on these model results, we find that, during the peak of ENSO (2015), daytime extreme temperatures are smaller over the central China region compared to a normal year (2014). During 2016, the risk of nighttime extreme temperatures is largely increased over the eastern coastal region. Both anomalies are of the same magnitude as the anthropogenic influence. Thus, ENSO can amplify or counterbalance (at a regional and annual scale) anthropogenic effects on extreme summer temperatures over China. Changes are mainly due to changes in the GEV location parameter. Thus, anomalies are due to a shift in the distributions and not to a change in temperature variability.摘要本研究探讨了人为强迫和自然变率对中国夏季极端高温灾害的潜在影响. 我们使用了不同强迫条件下(包括或者不包括温室气体和气溶胶排放)的三千多个成员集合模拟结果, 来评估人为强迫的影响;同时, 利用最近一次ENSO事件发展演变过程中的三个不同位相年份(2014中性年、2015厄尔尼诺年、2016拉尼娜年)对应的海表温度型态来评估自然变率的影响. 我们利用广义极值分布来分析集合结果. 基于模式结果, 我们发现在ENSO峰值期间(2015年), 日间极端气温在中国中部地区偏小. 在2016年, 夜间极端高温灾害在中国东部沿海地区大幅增加. 上述二者(自然变率的影响)都与人为影响的量级相当. 因此, 我们认为ENSO事件(在区域和年际尺度上)能够放大或者抵消人为强迫对中国夏季极端高温的影响. 此外, 本研究揭示了中国夏季极端高温的变化主要取决于广义极值分布参数的变化, 这意味着中国夏季极端高温的变化是由温度极值分布的偏移造成的, 而非温度变率本身强度的变化.


Climate Dynamics | 2017

Climate model forecast biases assessed with a perturbed physics ensemble

David P. Mulholland; Keith Haines; Sarah Sparrow; David Wallom

Perturbed physics ensembles have often been used to analyse long-timescale climate model behaviour, but have been used less often to study model processes on shorter timescales. We combine a transient perturbed physics ensemble with a set of initialised forecasts to deduce regional process errors present in the standard HadCM3 model, which cause the model to drift in the early stages of the forecast. First, it is shown that the transient drifts in the perturbed physics ensembles can be used to recover quantitatively the parameters that were perturbed. The parameters which exert most influence on the drifts vary regionally, but upper ocean mixing and atmospheric convective processes are particularly important on the 1-month timescale. Drifts in the initialised forecasts are then used to recover the ‘equivalent parameter perturbations’, which allow identification of the physical processes that may be at fault in the HadCM3 representation of the real world. Most parameters show positive and negative adjustments in different regions, indicating that standard HadCM3 values represent a global compromise. The method is verified by correcting an unusually widespread positive bias in the strength of wind-driven ocean mixing, with forecast drifts reduced in a large number of areas as a result. This method could therefore be used to improve the skill of initialised climate model forecasts by reducing model biases through regional adjustments to physical processes, either by tuning or targeted parametrisation refinement. Further, such regionally tuned models might also significantly outperform standard climate models, with global parameter configurations, in longer-term climate studies.


Scientific Data | 2018

Ensemble of European regional climate simulations for the winter of 2013 and 2014 from HadAM3P-RM3P

Nathalie Schaller; Sarah Sparrow; Neil Massey; Andy Bowery; Jonathan Miller; Simon Wilson; David Wallom; Friederike E. L. Otto

Large data sets used to study the impact of anthropogenic climate change on the 2013/14 floods in the UK are provided. The data consist of perturbed initial conditions simulations using the Weather@Home regional climate modelling framework. Two different base conditions, Actual, including atmospheric conditions (anthropogenic greenhouse gases and human induced aerosols) as at present and Natural, with these forcings all removed are available. The data set is made up of 13 different ensembles (2 actual and 11 natural) with each having more than 7500 members. The data is available as NetCDF V3 files representing monthly data within the period of interest (1st Dec 2013 to 15th February 2014) for both a specified European region at a 50 km horizontal resolution and globally at N96 resolution. The data is stored within the UK Natural and Environmental Research Council Centre for Environmental Data Analysis repository.


Nature Climate Change | 2018

Higher CO 2 concentrations increase extreme event risk in a 1.5 °C world

Hugh S. Baker; Richard J. Millar; David J. Karoly; Urs Beyerle; Benoit P. Guillod; Dann Mitchell; Hideo Shiogama; Sarah Sparrow; Tim Woollings; Myles R. Allen

The Paris Agreement1 aims to ‘pursue efforts to limit the temperature increase to 1.5 °C above pre-industrial levels.’ However, it has been suggested that temperature targets alone are insufficient to limit the risks associated with anthropogenic emissions2,3. Here, using an ensemble of model simulations, we show that atmospheric CO2 increase—an even more predictable consequence of emissions than global temperature increase—has a significant direct impact on Northern Hemisphere summer temperature, heat stress, and tropical precipitation extremes. Hence in an iterative climate mitigation regime aiming solely for a specific temperature goal, an unexpectedly low climate response may have corresponding ‘dangerous’ changes in extreme events. The direct impact of higher CO2 concentrations on climate extremes therefore substantially reduces the upper bound of the carbon budget, and highlights the need to explicitly limit atmospheric CO2 concentration when formulating allowable emissions. Thus, complementing global mean temperature goals with explicit limits on atmospheric CO2 concentrations in future climate policy would limit the adverse effects of high-impact weather extremes.A 1.5 °C temperature target can have varying atmospheric CO2 concentrations associated with it. GCM simulations reveal CO2 increases have a direct impact on climate extremes, highlighting the need for climate policy to complement temperature goals with CO2 targets.


Journal of Climate | 2018

Finding Ocean States that are Consistent with Observations from a Perturbed Physics Parameter Ensemble

Sarah Sparrow; Richard J. Millar; K. Yamazaki; Neil Massey; Adam C. Povey; Andy Bowery; R. G. Grainger; David Wallom; Myles R. Allen

AbstractA very large ensemble is used to identify subgrid-scale parameter settings for the HadCM3 model that are capable of best simulating the ocean state over the recent past (1980–2010). A simpl...

Collaboration


Dive into the Sarah Sparrow's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sihan Li

Oregon State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge