Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sarah T. Maddison is active.

Publication


Featured researches published by Sarah T. Maddison.


Monthly Notices of the Royal Astronomical Society | 2011

The Australia Telescope Compact Array Broad-band Backend: description and first results

Warwick E. Wilson; Richard H. Ferris; P. Axtens; A. Brown; E. Davis; G. Hampson; M. Leach; P. Roberts; S. Saunders; B. Koribalski; J. L. Caswell; E. Lenc; J. Stevens; M. A. Voronkov; Mark Hendrik Wieringa; Kate J. Brooks; Philip G. Edwards; R. D. Ekers; B. Emonts; L. Hindson; S. Johnston; Sarah T. Maddison; E. K. Mahony; S. S. Malu; M. Massardi; Minnie Y. Mao; D. McConnell; R. P. Norris; D. Schnitzeler; R. Subrahmanyan

Here we describe the Compact Array Broadband Backend (CABB) and present first results obtained with the upgraded Australia Telescope Compact Array (ATCA). The 16-fold increase in observing bandwidth, from 2×128 MHz to 2×2048 MHz, high bit sampling, and addition of 16 zoom windows (each divided into a further 2048 channels) provide major improvements for all ATCA observations. The benefits of the new system are: (1) hugely increased radio continuum and polarization sensitivity as well as image fidelity, (2) substantially improved capability to search for and map emission and absorption lines over large velocity ranges, (3) simultaneous multi-line and continuum observations, (4) increased sensitivity, survey speed and dynamic range due to high-bit sampling, and (5) high velocity resolution, while maintaining full polarization output. The new CABB system encourages all observers to make use of both spectral line and continuum data to achieve their full potential. Given the dramatic increase of the ATCA capabilities in all bands (ranging from 1.1 to 105 GHz) CABB enables scientific projects that were not feasible before the upgrade, such as simultaneous observations of multiple spectral lines, on-the-fly mapping, fast follow-up of radio transients (e.g., the radio afterglow of new supernovae) and maser observations at high velocity resolution and full polarization. The first science results presented here include wide-band spectra, high dynamic-range images, and polarization measurements, highlighting the increased capability and discovery potential of the ATCA.


Monthly Notices of the Royal Astronomical Society | 2012

The Milky Way Project First Data Release: a bubblier Galactic disc

Robert J. Simpson; Matthew S. Povich; Sarah Kendrew; Chris J. Lintott; Eli Bressert; K. Arvidsson; C. J. Cyganowski; Sarah T. Maddison; Kevin Schawinski; Reid Sherman; Arfon M. Smith; Grace A. Wolf-Chase

We present a new catalogue of 5106 infrared bubbles created through visual classification via the online citizen science website ‘The Milky Way Project’. Bubbles in the new catalogue have been independently measured by at least five individuals, producing consensus parameters for their position, radius, thickness, eccentricity and position angle. Citizen scientists – volunteers recruited online and taking part in this research – have independently rediscovered the locations of at least 86 per cent of three widely used catalogues of bubbles and H ii regions  whilst finding an order of magnitude more objects. 29 per cent of the Milky Way Project catalogue bubbles lie on the rim of a larger bubble, or have smaller bubbles located within them, opening up the possibility of better statistical studies of triggered star formation. Also outlined is the creation of a ‘heat map’ of star formation activity in the Galactic plane. This online resource provides a crowd-sourced map of bubbles and arcs in the Milky Way, and will enable better statistical analysis of Galactic star formation sites.


Astrophysical Journal Supplement Series | 2011

The Magellanic Mopra Assessment (MAGMA). I. the molecular cloud population of the large magellanic cloud

Tony Wong; Annie Hughes; Joergen Ott; Erik Muller; Jorge L. Pineda; J.-P. Bernard; You-Hua Chu; Yasuo Fukui; Robert A. Gruendl; C. Henkel; Akiko Kawamura; Ulrich Klein; Leslie W. Looney; Sarah T. Maddison; Yoji Mizuno; D. Paradis; Jonathan P. Seale; Daniel E. Welty

We present the properties of an extensive sample of molecular clouds in the Large Magellanic Cloud (LMC) mapped at 11?pc resolution in the CO(1-0) line. Targets were chosen based on a limiting CO flux and peak brightness as measured by the NANTEN survey. The observations were conducted with the ATNF Mopra Telescope as part of the Magellanic Mopra Assessment. We identify clouds as regions of connected CO emission and find that the distributions of cloud sizes, fluxes, and masses are sensitive to the choice of decomposition parameters. In all cases, however, the luminosity function of CO clouds is steeper than dN/dLL ?2, suggesting that a substantial fraction of mass is in low-mass clouds. A correlation between size and linewidth, while apparent for the largest emission structures, breaks down when those structures are decomposed into smaller structures. We argue that the correlation between virial mass and CO luminosity is the result of comparing two covariant quantities, with the correlation appearing tighter on larger scales where a size-linewidth relation holds. The virial parameter (the ratio of a clouds kinetic to self-gravitational energy) shows a wide range of values and exhibits no clear trends with the CO luminosity or the likelihood of hosting young stellar object (YSO) candidates, casting further doubt on the assumption of virialization for molecular clouds in the LMC. Higher CO luminosity increases the likelihood of a cloud harboring a YSO candidate, and more luminous YSOs are more likely to be coincident with detectable CO emission, confirming the close link between giant molecular clouds and massive star formation.


Monthly Notices of the Royal Astronomical Society | 2010

Physical properties of giant molecular clouds in the Large Magellanic Cloud

Annie Hughes; Tony Wong; Jürgen Ott; Erik Muller; Jorge L. Pineda; Yoji Mizuno; J.-P. Bernard; D. Paradis; Sarah T. Maddison; William T. Reach; Lister Staveley-Smith; Akiko Kawamura; Margaret M. Meixner; Sungeun Kim; Toshikazu Onishi; Norikazu Mizuno; Yasuo Fukui

The Magellanic Mopra Assessment (MAGMA) is a high angular resolution ^(12)CO (J = 1 → 0) mapping survey of giant molecular clouds (GMCs) in the Large Magellanic Cloud (LMC) and Small Magellanic Cloud using the Mopra Telescope. Here we report on the basic physical properties of 125 GMCs in the LMC that have been surveyed to date. The observed clouds exhibit scaling relations that are similar to those determined for Galactic GMCs, although LMC clouds have narrower linewidths and lower CO luminosities than Galactic clouds of a similar size. The average mass surface density of the LMC clouds is 50 M_⊙ pc^(−2), approximately half that of GMCs in the inner Milky Way. We compare the properties of GMCs with and without signs of massive star formation, finding that non-star-forming GMCs have lower peak CO brightness than star-forming GMCs. We compare the properties of GMCs with estimates for local interstellar conditions: specifically, we investigate the H i column density, radiation field, stellar mass surface density and the external pressure. Very few cloud properties demonstrate a clear dependence on the environment; the exceptions are significant positive correlations between (i) the H i column density and the GMC velocity dispersion, (ii) the stellar mass surface density and the average peak CO brightness and (iii) the stellar mass surface density and the CO surface brightness. The molecular mass surface density of GMCs without signs of massive star formation shows no dependence on the local radiation field, which is inconsistent with the photoionization-regulated star formation theory proposed by McKee. We find some evidence that the mass surface density of the MAGMA clouds increases with the interstellar pressure, as proposed by Elmegreen, but the detailed predictions of this model are not fulfilled once estimates for the local radiation field, metallicity and GMC envelope mass are taken into account.


Astronomy and Astrophysics | 2012

An icy Kuiper belt around the young solar-type star HD 181327

J. Lebreton; J.-C. Augereau; Wing-Fai Thi; Aki Roberge; J. Donaldson; Glenn Schneider; Sarah T. Maddison; Francois Menard; Pablo Riviere-Marichalar; Geoffrey S. Mathews; I. Kamp; C. Pinte; W. R. F. Dent; D. Barrado; Gaspard Duchene; Jean-François Gonzalez; C. A. Grady; G. Meeus; E. Pantin; Jonathan P. Williams; Peter Woitke

Context. HD 181327 is a young main sequence F5/F6 V star belonging to the beta Pictoris moving group (age similar to 12 Myr). It harbors an optically thin belt of circumstellar material at radius similar to 90 AU, presumed to result from collisions in a population of unseen planetesimals. Aims. We aim to study the dust properties in the belt in details, and to constrain the gas-to-dust ratio. Methods. We obtained far-infrared photometric observations of HD 181327 with the PACS instrument onboard the Herschel Space Observatory(star), complemented by new 3.2 mm observations carried with the ATCA(star star) array. The geometry of the belt is constrained with newly reduced HST/NICMOS scattered light images that allow the degeneracy between the disk geometry and the dust properties to be broken. We then use the radiative transfer code GRATER to compute a large grid of models, and we identify the grain models that best reproduce the spectral energy distribution (SED) through a Bayesian analysis. We attempt to detect the oxygen and ionized carbon fine-structure lines with Herschel/PACS spectroscopy, providing observables to our photochemical code ProDiMo. Results. The HST observations confirm that the dust is confined in a narrow belt. The continuum is detected with Herschel/PACS completing nicely the SED in the far-infrared. The disk is marginally resolved with both PACS and ATCA. A medium integration of the gas spectral lines only provides upper limits on the [OI] and [CII] line fluxes. We show that the HD 181327 dust disk consists of micron-sized grains of porous amorphous silicates and carbonaceous material surrounded by an important layer of ice, for a total dust mass of similar to 0.05 M-circle plus. (in grains up to 1 mm). We discuss evidences that the grains consists of fluffy aggregates. The upper limits on the gas atomic lines do not provide unambiguous constraints: only if the PAH abundance is high, the gas mass must be lower than similar to 17 M-circle plus. Conclusions. Despite the weak constraints on the gas disk, the age of HD 181327 and the properties of the dust disk suggest that it has passed the stage of gaseous planets formation. The dust reveals a population of icy planetesimals, similar to the primitive Edgeworth-Kuiper belt, that may be a source for the future delivery of water and volatiles onto forming terrestrial planets.


Astronomy and Astrophysics | 2007

Investigating grain growth in disks around southern T Tauri stars at millimetre wavelengths

Dave Lommen; Christopher M. Wright; Sarah T. Maddison; Jes K. Jorgensen; Tyler L. Bourke; E. F. van Dishoeck; Annie Hughes; David J. Wilner; Michael G. Burton; H. J. van Langevelde

Received ?? ; Accepted ?? Abstract. Low-mass stars form with disks in which the coagulation of grains may eventually lead to the formation of planets. It is not known when and where grain growth occurs, as models that explain the observations are often degenerate. A way to break this degeneracy is to resolve the sources under study.


The Astrophysical Journal | 2005

NUMERICAL MODELING OF DUSTY DEBRIS DISKS

Adam T. Deller; Sarah T. Maddison

Infrared and submillimeter observations of nearby Vega-like stars have revealed a number of clumpy, asymmetric dust debris disks. Previous studies using semianalytical and numerical methods have suggested planetary companions of various mass as the likely cause of most examples of disk asymmetry. In this paper, we modify an N-body symplectic gravitational integrator to include radiation terms and conduct medium-resolution parameter searches to identify likely planetary candidates in observed Vega-like systems. We also present high-resolution models of Vega and Eridani, comparing our results to those of previous authors, and a new model for Fomalhaut.


Astronomy and Astrophysics | 2010

Planet gaps in the dust layer of 3D protoplanetary disks - I. Hydrodynamical simulations of T Tauri disks

Laure Fouchet; Jean-François Gonzalez; Sarah T. Maddison

Context. While sub-micron- and micron-sized dust grains are generally well mixed with the gas phase in protoplanetary disks, larger grains will be partially decoupled and as a consequence have a different distribution from that of the gas. This has ramifications for predictions of the observability of protoplanetary disks, for which gas-only studies will provide an inaccurate picture. Specifically, criteria for gap opening in the presence of a planet have generally been studied for the gas phase, whereas the situation can be quite different in the dust layer once grains reach mm sizes, which is what will be observed by ALMA. Aims. We aim to investigate the formation and structure of a planetary gap in the dust layer of a protoplanetary disk with an embedded planet. Methods. We perform 3D, gas+dust SPH simulations of a protoplanetary disk with a planet on a fixed circular orbit at 40 AU to study the evolution of both the gas and dust distributions and densities in the disk. We run a series of simulations in which the planet mass and the dust grain size varies. Results. We show that the gap in the dust layer is more striking than in the gas phase and that it is deeper and wider for more massive planets as well as for larger grains. For a massive enough planet, we note that cm-sized grains remain inside the gap in corotation and that their population in the outer disk shows an asymmetric structure, a signature of disk-planet interactions even for a circular planetary orbit, which should be observable with ALMA.


Monthly Notices of the Royal Astronomical Society | 2006

A multiresolution analysis of the radio-FIR correlation in the Large Magellanic Cloud

Annie Hughes; Tony Wong; R. D. Ekers; Lister Staveley-Smith; Miroslav Filipovic; Sarah T. Maddison; Yasuo Fukui; Norikazu Mizuno

We investigate the local correlation between the 1.4-GHz radio continuum and 60-μm far-infrared (FIR) emission within the Large Magellanic Cloud (LMC) on spatial scales between 0.05 and 1.5 kpc. On scales below ∼1 kpc, the radio-FIR correlation is clearly better than the correlation of the cold gas tracers (CO and H i) with either the radio or the FIR emission. For the LMC as a whole, there is a tight correlation between the radio and FIR emission on spatial scales above ∼50 pc. By decomposing the radio emission into thermal and non-thermal components, however, we show that the scale on which the radio-FIR correlation breaks down depends on the thermal fraction of the radio emission; regions that show a strong correlation to very small scales are the same regions where the thermal fraction of the radio emission is high. Contrary to previous studies of the local radio-FIR correlation in the LMC, we show that the slope of the relation between the radio and FIR emission is non-linear. In bright star-forming regions, the radio emission increases faster than linearly with respect to the FIR emission (power-law slope of ∼1.2), whereas a flatter slope of ∼0.6-0.9 applies more generally across the LMC. Our results are consistent with a scenario in which the ultraviolet photons and cosmic rays in the LMC have a common origin in massive star formation, but the cosmic rays are able to diffuse away from their production sites. Our results do not provide direct evidence for coupling between the magnetic field and the local gas density, but we note that synchrotron emission may not be a good tracer of the magnetic field if cosmic rays can readily escape the LMC.


Astronomy and Astrophysics | 2005

Dust distribution in protoplanetary disks Vertical settling and radial migration

Laure Barriere-Fouchet; Jean-François Gonzalez; James R. Murray; Robin J. Humble; Sarah T. Maddison

We present the results of a three dimensional, locally isothermal, non-self-gravitating SPH code which models protoplanetary disks with two fluids: gas and dust. We ran simulations of a 1 Msun star surrounded by a 0.01 Msun disk comprising 99% gas and 1% dust in mass and extending from 0.5 to ~300 AU. The grain size ranges from 0.001 mm to 10 m for the low resolution (~25 000 SPH particles) simulations and from 0.1 mm to 10 cm for the high resolution (~160 000 SPH particles) simulations. Dust grains are slowed down by the sub-Keplerian gas and lose angular momentum, forcing them to migrate towards the central star and settle to the midplane. The gas drag efficiency varies according to the grain size, with the larger bodies being weakly influenced and following marginally perturbed Keplerian orbits, while smaller grains are strongly coupled to the gas. For intermediate sized grains, the drag force decouples the dust and gas, allowing the dust to preferentially migrate radially and efficiently settle to the midplane. The resulting dust distributions for each grain size will indicate, when grain growth is added, the regions when planets are likely to form.

Collaboration


Dive into the Sarah T. Maddison's collaboration.

Top Co-Authors

Avatar

Christopher M. Wright

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Jean-François Gonzalez

École normale supérieure de Lyon

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kurt Liffman

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Francois Menard

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guillaume Laibe

École normale supérieure de Lyon

View shared research outputs
Top Co-Authors

Avatar

Margaret Mazzolini

Swinburne University of Technology

View shared research outputs
Top Co-Authors

Avatar

Michael G. Burton

University of New South Wales

View shared research outputs
Researchain Logo
Decentralizing Knowledge