Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sarah Trost is active.

Publication


Featured researches published by Sarah Trost.


Molecular Psychiatry | 2016

Subcortical volumetric abnormalities in bipolar disorder.

Derrek P. Hibar; Lars T. Westlye; T G M van Erp; Jerod Rasmussen; Cassandra D. Leonardo; Joshua Faskowitz; Unn K. Haukvik; Cecilie B. Hartberg; Nhat Trung Doan; Ingrid Agartz; Anders M. Dale; Oliver Gruber; Bernd Krämer; Sarah Trost; Benny Liberg; Christoph Abé; C J Ekman; Martin Ingvar; Mikael Landén; Scott C. Fears; Nelson B. Freimer; Carrie E. Bearden; Emma Sprooten; David C. Glahn; Godfrey D. Pearlson; Louise Emsell; Joanne Kenney; C. Scanlon; Colm McDonald; Dara M. Cannon

Considerable uncertainty exists about the defining brain changes associated with bipolar disorder (BD). Understanding and quantifying the sources of uncertainty can help generate novel clinical hypotheses about etiology and assist in the development of biomarkers for indexing disease progression and prognosis. Here we were interested in quantifying case–control differences in intracranial volume (ICV) and each of eight subcortical brain measures: nucleus accumbens, amygdala, caudate, hippocampus, globus pallidus, putamen, thalamus, lateral ventricles. In a large study of 1710 BD patients and 2594 healthy controls, we found consistent volumetric reductions in BD patients for mean hippocampus (Cohen’s d=−0.232; P=3.50 × 10−7) and thalamus (d=−0.148; P=4.27 × 10−3) and enlarged lateral ventricles (d=−0.260; P=3.93 × 10−5) in patients. No significant effect of age at illness onset was detected. Stratifying patients based on clinical subtype (BD type I or type II) revealed that BDI patients had significantly larger lateral ventricles and smaller hippocampus and amygdala than controls. However, when comparing BDI and BDII patients directly, we did not detect any significant differences in brain volume. This likely represents similar etiology between BD subtype classifications. Exploratory analyses revealed significantly larger thalamic volumes in patients taking lithium compared with patients not taking lithium. We detected no significant differences between BDII patients and controls in the largest such comparison to date. Findings in this study should be interpreted with caution and with careful consideration of the limitations inherent to meta-analyzed neuroimaging comparisons.


Human Brain Mapping | 2016

Differentiating unipolar and bipolar depression by alterations in large-scale brain networks.

Roberto Goya-Maldonado; Katja Brodmann; Maria Keil; Sarah Trost; Peter Dechent; Oliver Gruber

Misdiagnosing bipolar depression can lead to very deleterious consequences of mistreatment. Although depressive symptoms may be similarly expressed in unipolar and bipolar disorder, changes in specific brain networks could be very distinct, being therefore informative markers for the differential diagnosis. We aimed to characterize specific alterations in candidate large‐scale networks (frontoparietal, cingulo‐opercular, and default mode) in symptomatic unipolar and bipolar patients using resting state fMRI, a cognitively low demanding paradigm ideal to investigate patients.


Neuropsychopharmacology | 2014

Disturbed anterior prefrontal control of the mesolimbic reward system and increased impulsivity in bipolar disorder.

Sarah Trost; Esther K. Diekhof; Kerstin Zvonik; Mirjana Lewandowski; Juliana Usher; Maria Keil; David Zilles; Peter Falkai; Peter Dechent; Oliver Gruber

Bipolar disorder (BD) is characterized by recurrent mood episodes ranging from severe depression to acute full-blown mania. Both states of this severe psychiatric disorder have been associated with alterations of reward processing in the brain. Here, we present results of a functional magnetic resonance imaging (fMRI) study on the neural correlates and functional interactions underlying reward gain processing and reward dismissal in favor of a long-term goal in bipolar patients. Sixteen medicated patients diagnosed with bipolar I disorder, euthymic to mildly depressed, and sixteen matched healthy controls performed the ‘desire-reason dilemma’ (DRD) paradigm demanding rejection of priorly conditioned reward stimuli to successfully pursue a superordinate goal. Both groups exhibited significant activations in reward-related brain regions, particularly in the mesolimbic reward system. However, bipolar patients showed reduced neural responses of the ventral striatum (vStr) when exploiting a reward stimulus, and exhibited a decreased suppression of the reward-related activation of the mesolimbic reward system while having to reject immediate reward in favor of the long-term goal. Further, functional interaction between the anteroventral prefrontal cortex and the vStr in the ‘DRD’ was significantly impaired in the bipolar group. These findings provide evidence for a reduced responsivity of the vStr to reward stimuli in BD, possibly related to clinical features like anhedonia. The disturbed top-down control of mesolimbic reward signals by prefrontal brain regions in BD can be interpreted in terms of a disease-related enhanced impulsivity, a trait marker of BD.


Journal of Psychiatric Research | 2013

DISC1 (disrupted-in-schizophrenia 1) is associated with cortical grey matter volumes in the human brain: a voxel-based morphometry (VBM) study.

Sarah Trost; B. Platz; Juliana Usher; Harald Scherk; Thomas Wobrock; Savira Ekawardhani; Jobst Meyer; W. Reith; Peter Falkai; Oliver Gruber

DISC1 (Disrupted-In-Schizophrenia 1), one of the top candidate genes for schizophrenia, has been associated with a range of major mental illnesses over the last two decades. DISC1 is crucially involved in neurodevelopmental processes of the human brain. Several haplotypes and single nucleotide polymorphisms of DISC1 have been associated with changes of grey matter volumes in brain regions known to be altered in schizophrenia and other psychiatric disorders. The aim of the present study was to investigate the effects of two single nucleotide polymorphisms (SNPs) of DISC1 on grey matter volumes in human subjects using voxel-based morphometry (VBM). 114/113 participating subjects (psychiatric patients and healthy controls) were genotyped with respect to two at-risk SNPs of DISC1, rs6675281 and rs821616. All participants underwent structural magnetic resonance imaging (MRI). MRI data was statistically analyzed using voxel-based morphometry. We found significant alterations of grey matter volumes in prefrontal and temporal brain regions in association with rs6675281 and rs821616. These effects of DISC1 polymorphisms on brain morphology provide further support for an involvement of DISC1 in the neurobiology of major psychiatric disorders such as schizophrenia.


Neuropsychobiology | 2012

Evidence for a Double Dissociation of Articulatory Rehearsal and Non-Articulatory Maintenance of Phonological Information in Human Verbal Working Memory

Sarah Trost; Oliver Gruber

Objective: Recent functional neuroimaging studies have provided evidence that human verbal working memory is represented by two complementary neural systems, a left lateralized premotor-parietal network implementing articulatory rehearsal and a presumably phylogenetically older bilateral anterior-prefrontal/inferior-parietal network subserving non-articulatory maintenance of phonological information. In order to corroborate these findings from functional neuroimaging, we performed a targeted behavioural study in patients with very selective and circumscribed brain lesions to key regions suggested to support these different subcomponents of human verbal working memory. Methods: Within a sample of over 500 neurological patients assessed with high-resolution structural magnetic resonance imaging, we identified 2 patients with corresponding brain lesions, one with an isolated lesion to Broca’s area and the other with a selective lesion bilaterally to the anterior middle frontal gyrus. These 2 patients as well as groups of age-matched healthy controls performed two circuit-specific verbal working memory tasks. In this way, we systematically assessed the hypothesized selective behavioural effects of these brain lesions on the different subcomponents of verbal working memory in terms of a double dissociation. Results: Confirming prior findings, the lesion to Broca’s area led to reduced performance under articulatory rehearsal, whereas the non-articulatory maintenance of phonological information was unimpaired. Conversely, the bifrontopolar brain lesion was associated with impaired non-articulatory phonological working memory, whereas performance under articulatory rehearsal was unaffected. Conclusion: The present experimental neuropsychological study in patients with specific and circumscribed brain lesions confirms the hypothesized double dissociation of two complementary brain systems underlying verbal working memory in humans. In particular, the results demonstrate the functional relevance of the anterior prefrontal cortex for non-articulatory maintenance of phonological information and, in this way, provide further support for the evolutionary-based functional-neuroanatomical model of human working memory.


European Archives of Psychiatry and Clinical Neuroscience | 2015

Dissociating pathomechanisms of depression with fMRI: bottom- up or top-down dysfunctions of the reward system

Roberto Goya-Maldonado; Kristina Weber; Sarah Trost; Esther K. Diekhof; Maria Keil; Peter Dechent; Oliver Gruber

Depression is a debilitating psychiatric disorder characterized among other aspects by the inability to properly experience or respond to reward. However, it remains unclear whether patients with depression present impaired reward system due to abnormal modulatory mechanisms. We investigated the activation of the nucleus accumbens (NAcc), a crucial region involved in reward processing, with functional magnetic resonance imaging using the desire-reason-dilemma paradigm. This task allows tracking the activity of the NAcc during the acceptance or the rejection of previously conditioned reward stimuli. Patients were assigned into subgroups of lower (LA) or higher (HA) NAcc activation according to beta weights. LA patients presented significant hypoactivation in the ventral tegmental area in addition to bilateral ventral striatum, confirming impairments in the bottom-up input to the NAcc. Conversely, HA patients presented significant hyperactivation in prefrontal areas such as the rostral anterior cingulate cortex and the anterior ventral prefrontal cortex in addition to bilateral ventral striatum, suggesting disturbances in the top-down regulation of the NAcc. Demographic and clinical differences explaining the abnormal co-activations of midbrain and prefrontal regions were not identified. Therefore, we provide evidence for dysfunctional bottom-up processing in one potential neurobiological subtype of depression (LA) and dysfunctional top-down modulation in another subtype (HA). We suggest that the midbrain and prefrontal regions are more specific pathophysiological substrates for each depression subtype. Above all, our results encourage the segregation of patients by similar dysfunctional mechanisms of the dopaminergic system, which would finally contribute to disentangle more specific pathogeneses and guide the development of more personalized targets for future therapies.


European Archives of Psychiatry and Clinical Neuroscience | 2013

The DTNBP1 (dysbindin-1) gene variant rs2619522 is associated with variation of hippocampal and prefrontal grey matter volumes in humans.

Sarah Trost; B. Platz; Juliana Usher; Harald Scherk; Thomas Wobrock; Savira Ekawardhani; Jobst Meyer; W. Reith; Peter Falkai; Oliver Gruber

DTNBP1 is one of the most established susceptibility genes for schizophrenia, and hippocampal volume reduction is one of the major neuropathological findings in this severe disorder. Consistent with these findings, the encoded protein dysbindin-1 has been shown to be diminished in glutamatergic hippocampal neurons in schizophrenic patients. The aim of this study was to investigate the effects of two single nucleotide polymorphisms of DTNBP1 on grey matter volumes in human subjects using voxel-based morphometry. Seventy-two subjects were included and genotyped with respect to two single nucleotide polymorphisms of DTNBP1 (rs2619522 and rs1018381). All participants underwent structural magnetic resonance imaging (MRI). MRI data were preprocessed and statistically analysed using standard procedures as implemented in SPM5 (Statistical Parametric Mapping), in particular the voxel-based morphometry (VBM) toolbox. We found significant effects of the DTNBP1 SNP rs2619522 bilaterally in the hippocampus as well as in the anterior middle frontal gyrus and the intraparietal cortex. Carriers of the G allele showed significantly higher grey matter volumes in these brain regions than T/T homozygotes. Compatible with previous findings on a role of dysbindin in hippocampal functions as well as in major psychoses, the present study provides first direct in vivo evidence that the DTNBP1 SNP rs2619522 is associated with variation of grey matter volumes bilaterally in the hippocampus.


Frontiers in Psychiatry | 2014

Do Manual and Voxel-Based Morphometry Measure the Same? A Proof of Concept Study

Niels K. Focke; Sarah Trost; Walter Paulus; Peter Falkai; Oliver Gruber

Voxel-based morphometry (VBM) is a commonly used method to study volumetric variations on a whole brain basis. However, it is often criticized for potential confounds, mainly based on imperfect spatial registration. We therefore aimed to evaluate if VBM and “gold standard” manual volumetry are measuring the same effects with respect to subcortical gray matter volumes. Manual regions-of-interest were drawn in the hippocampus, amygdala, nucleus accumbens, thalamus, putamen, pallidum, and caudate nucleus bilaterally. Resulting volumes were used for a whole brain VBM correlation analysis with Statistical Parametric Mapping (SPM8). The hippocampus, amygdala, putamen, and caudate nucleus were correctly identified by SPM using the contemporary high-dimensional normalization (DARTEL toolbox). This strongly suggests that VBM and manual volumetry both are indeed measuring the same effects with regard to subcortical brain structures.


European Archives of Psychiatry and Clinical Neuroscience | 2015

Influence of DGKH variants on amygdala volume in patients with bipolar affective disorder and schizophrenia.

Sarah Kittel-Schneider; Thomas Wobrock; Harald Scherk; Thomas Schneider-Axmann; Sarah Trost; David Zilles; Claudia Wolf; Andrea Schmitt; Berend Malchow; Alkomiet Hasan; M. Backens; W. Reith; Peter Falkai; Oliver Gruber; Andreas Reif

Abstract The diacylglycerol kinase eta (DGKH) gene, first identified in a genome-wide association study, is one of the few replicated risk genes of bipolar affective disorder (BD). Following initial positive studies, it not only was found to be associated with BD but also implicated in the etiology of other psychiatric disorders featuring affective symptoms, rendering DGKH a cross-disorder risk gene. However, the (patho-)physiological role of the encoded enzyme is still elusive. In the present study, we investigated primarily the influence of a risk haplotype on amygdala volume in patients suffering from schizophrenia or BD as well as healthy controls and four single nucleotide polymorphisms conveying risk. There was a significant association of the DGKH risk haplotype with increased amygdala volume in BD, but not in schizophrenia or healthy controls. These findings add to the notion of a role of DGKH in the pathogenesis of BD.


European Archives of Psychiatry and Clinical Neuroscience | 2015

Disturbed cortico-amygdalar functional connectivity as pathophysiological correlate of working memory deficits in bipolar affective disorder.

Katharina Stegmayer; Juliana Usher; Sarah Trost; Ilona Henseler; Heike Tost; Marcella Rietschel; Peter Falkai; Oliver Gruber

Abstract Patients suffering from bipolar affective disorder show deficits in working memory functions. In a previous functional magnetic resonance imaging study, we observed an abnormal hyperactivity of the amygdala in bipolar patients during articulatory rehearsal in verbal working memory. In the present study, we investigated the dynamic neurofunctional interactions between the right amygdala and the brain systems that underlie verbal working memory in both bipolar patients and healthy controls. In total, 18 euthymic bipolar patients and 18 healthy controls performed a modified version of the Sternberg item-recognition (working memory) task. We used the psychophysiological interaction approach in order to assess functional connectivity between the right amygdala and the brain regions involved in verbal working memory. In healthy subjects, we found significant negative functional interactions between the right amygdala and multiple cortical brain areas involved in verbal working memory. In comparison with the healthy control subjects, bipolar patients exhibited significantly reduced functional interactions of the right amygdala particularly with the right-hemispheric, i.e., ipsilateral, cortical regions supporting verbal working memory. Together with our previous finding of amygdala hyperactivity in bipolar patients during verbal rehearsal, the present results suggest that a disturbed right-hemispheric “cognitive–emotional” interaction between the amygdala and cortical brain regions underlying working memory may be responsible for amygdala hyperactivation and affects verbal working memory (deficits) in bipolar patients.

Collaboration


Dive into the Sarah Trost's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Zilles

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar

Harald Scherk

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar

Maria Keil

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Juliana Usher

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar

Peter Dechent

University of Göttingen

View shared research outputs
Researchain Logo
Decentralizing Knowledge