Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sarah Weisman is active.

Publication


Featured researches published by Sarah Weisman.


Annual Review of Entomology | 2010

Insect silk: One name, many materials

Tara D. Sutherland; James H. Young; Sarah Weisman; Cheryl Y. Hayashi; David J. Merritt

Silks play a crucial role in the survival and reproduction of many insects. Labial glands, Malpighian tubules, and a variety of dermal glands have evolved to produce these silks. The glands synthesize silk proteins, which become semicrystalline when formed into fibers. Although each silk contains one dominant crystalline structure, the range of molecular structures that can form silk fibers is greater than any other structural protein group. On the basis of silk gland type, silk protein molecular structure, and the phylogenetic relationship of silk-producing species, we grouped insect silks into 23 distinct categories, each likely to represent an independent evolutionary event. Despite having diverse functions and fundamentally different protein structures, these silks typically have high levels of protein crystallinity and similar amino acid compositions. The substantial crystalline content confers extraordinary mechanical properties and stability to silk and appears to be required for production of fine protein fibers.


Biomaterials | 2010

Honeybee silk: Recombinant protein production, assembly and fiber spinning

Sarah Weisman; Victoria S. Haritos; Jeffrey S. Church; Mickey G. Huson; Stephen T. Mudie; Andrew J.W. Rodgers; Geoff Dumsday; Tara D. Sutherland

Transgenic production of silkworm and spider silks as biomaterials has posed intrinsic problems due to the large size and repetitive nature of the silk proteins. In contrast the silk of honeybees (Apis mellifera) is composed of a family of four small and non-repetitive fibrous proteins. We report recombinant production and purification of the four full-length unmodified honeybee silk proteins in Escherichia coli at substantial yields of 0.2-2.5 g/L. Under the correct conditions the recombinant proteins self-assembled to reproduce the native coiled coil structure. Using a simple biomimetic spinning system we could fabricate recombinant silk fibers that replicated the tensile strength of the native material.


Biopolymers | 2012

The coiled coil silk of bees, ants and hornets

Tara D. Sutherland; Sarah Weisman; Andrew A. Walker; Stephen T. Mudie

In this article, we review current knowledge about the silk produced by the larvae of bees, ants, and hornets [Apoidea and Vespoidea: Hymenoptera]. Different species use the silk either alone or in composites for a variety of purposes including mechanical reinforcement, thermal regulation, or humidification. The characteristic molecular structure of this silk is α-helical proteins assembled into tetrameric coiled coils. Gene sequences from seven species are available, and each species possesses a copy of each of four related silk genes that encode proteins predicted to form coiled coils. The proteins are ordered at multiple length scales within the labial gland of the final larval instar before spinning. The insects control the morphology of the silk during spinning to produce either fibers or sheets. The silk proteins are small and non repetitive and have been produced artificially at high levels by fermentation in E. coli. The artificial silk proteins can be fabricated into materials with structural and mechanical properties similar to those of native silks.


PLOS ONE | 2011

Single Honeybee Silk Protein Mimics Properties of Multi-Protein Silk

Tara D. Sutherland; Jeffrey S. Church; Xiao Hu; Mickey G. Huson; David L. Kaplan; Sarah Weisman

Honeybee silk is composed of four fibrous proteins that, unlike other silks, are readily synthesized at full-length and high yield. The four silk genes have been conserved for over 150 million years in all investigated bee, ant and hornet species, implying a distinct functional role for each protein. However, the amino acid composition and molecular architecture of the proteins are similar, suggesting functional redundancy. In this study we compare materials generated from a single honeybee silk protein to materials containing all four recombinant proteins or to natural honeybee silk. We analyse solution conformation by dynamic light scattering and circular dichroism, solid state structure by Fourier Transform Infrared spectroscopy and Raman spectroscopy, and fiber tensile properties by stress-strain analysis. The results demonstrate that fibers artificially generated from a single recombinant silk protein can reproduce the structural and mechanical properties of the natural silk. The importance of the four protein complex found in natural silk may lie in biological silk storage or hierarchical self-assembly. The finding that the functional properties of the mature material can be achieved with a single protein greatly simplifies the route to production for artificial honeybee silk.


Biomacromolecules | 2008

An Unlikely Silk: The Composite Material of Green Lacewing Cocoons

Sarah Weisman; Holly E. Trueman; Stephen T. Mudie; Jeffrey S. Church; Tara D. Sutherland; Victoria S. Haritos

Spiders routinely produce multiple types of silk; however, common wisdom has held that insect species produce one type of silk each. This work reports that the green lacewing ( Mallada signata, Neuroptera) produces two distinct classes of silk. We identified and sequenced the gene that encodes the major protein component of the larval lacewing cocoon silk and demonstrated that it is unrelated to the adult lacewing egg-stalk silk. The cocoon silk protein is 49 kDa in size and is alanine rich (>40%), and it contains an alpha-helical secondary structure. The final instar lacewing larvae spin protein fibers of approximately 2 microm diameter to construct a loosely woven cocoon. In a second stage of cocoon construction, the insects lay down an inner wall of lipids that uses the fibers as a scaffold. We propose that the silk protein fibers provide the mechanical strength of the composite lacewing cocoon whereas the lipid layer provides a barrier to water loss during pupation.


Journal of Structural Biology | 2009

Fifty years later: The sequence, structure and function of lacewing cross-beta silk

Sarah Weisman; Shoko Okada; Stephen T. Mudie; Mickey G. Huson; Holly E. Trueman; Alagacone Sriskantha; Victoria S. Haritos; Tara D. Sutherland

Classic studies of protein structure in the 1950s and 1960s demonstrated that green lacewing egg stalk silk possesses a rare native cross-beta sheet conformation. We have identified and sequenced the silk genes expressed by adult females of a green lacewing species. The two encoded silk proteins are 109 and 67 kDa in size and rich in serine, glycine and alanine. Over 70% of each protein sequence consists of highly repetitive regions with 16-residue periodicity. The repetitive sequences can be fitted to an elegant cross-beta sheet structural model with protein chains folded into regular 8-residue long beta strands. This model is supported by wide-angle X-ray scattering data and tensile testing from both our work and the original papers. We suggest that the silk proteins assemble into stacked beta sheet crystallites bound together by a network of cystine cross-links. This hierarchical structure gives the lacewing silk high lateral stiffness nearly threefold that of silkworm silk, enabling the egg stalks to effectively suspend eggs and protect them from predators.


Acta Biomaterialia | 2011

Production, structure and in vitro degradation of electrospun honeybee silk nanofibers

Corinne R. Wittmer; Xiao Hu; Pierre-Chanel Gauthier; Sarah Weisman; David L. Kaplan; Tara D. Sutherland

Honeybees produce silken cocoons containing four related fibrous proteins. High levels of each of the honeybee silk proteins can be produced recombinantly by fermentation in Escherichia coli. In this study we have used electrospinning to fabricate a single recombinant honeybee silk protein, AmelF3, into nanofibers of around 200 nm diameter. Infrared spectroscopy found that the molecular structure of the nanofibers was predominantly coiled coil, essentially the same as native honeybee silk. Mats of the honeybee nanofibers were treated with methanol or by water annealing, which increased their β-sheet content and rendered them water insensitive. The insoluble mats were degraded by protease on a time scale of hours to days. The protease gradually released proteins from the solid state and these were subsequently rapidly degraded into small peptides without the accumulation of partial degradation products. Cell culture assays demonstrated that the mats allowed survival, attachment and proliferation of fibroblasts. These results indicate that honeybee silk proteins meet many prerequisites for use as a biomaterial.


Scientific Reports | 2013

A new class of animal collagen masquerading as an insect silk

Tara D. Sutherland; Yong Y. Peng; Holly E. Trueman; Sarah Weisman; Shoko Okada; Andrew A. Walker; Alagacone Sriskantha; Jacinta F. White; Mickey G. Huson; Jerome A. Werkmeister; Veronica Glattauer; Violet Stoichevska; Stephen T. Mudie; Victoria S. Haritos; John A. M. Ramshaw

Collagen is ubiquitous throughout the animal kingdom, where it comprises some 28 diverse molecules that form the extracellular matrix within organisms. In the 1960s, an extracorporeal animal collagen that forms the cocoon of a small group of hymenopteran insects was postulated. Here we categorically demonstrate that the larvae of a sawfly species produce silk from three small collagen proteins. The native proteins do not contain hydroxyproline, a post translational modification normally considered characteristic of animal collagens. The function of the proteins as silks explains their unusual collagen features. Recombinant proteins could be produced in standard bacterial expression systems and assembled into stable collagen molecules, opening the door to manufacture a new class of artificial collagen materials.


PLOS ONE | 2012

Controlling the Molecular Structure and Physical Properties of Artificial Honeybee Silk by Heating or by Immersion in Solvents

Mickey G. Huson; Jeffrey S. Church; Jacinta Poole; Sarah Weisman; Alagacone Sriskantha; Andrew C. Warden; Peter M. Campbell; John A. M. Ramshaw; Tara D. Sutherland

Honeybee larvae produce silken cocoons that provide mechanical stability to the hive. The silk proteins are small and non-repetitive and therefore can be produced at large scale by fermentation in E. coli. The recombinant proteins can be fabricated into a range of forms; however the resultant material is soluble in water and requires a post production stabilizing treatment. In this study, we describe the structural and mechanical properties of sponges fabricated from artificial honeybee silk proteins that have been stabilized in aqueous methanol baths or by dry heating. Aqueous methanol treatment induces formation of ß-sheets, with the amount of ß-sheet dictated by methanol concentration. Formation of ß-sheets renders sponges insoluble in water and generates a reversibly compressible material. Dry heat treatments at 190°C produce a water insoluble material, that is stiffer than the methanol treated equivalent but without significant secondary structural changes. Honeybee silk proteins are particularly high in Lys, Ser, Thr, Glu and Asp. The properties of the heat treated material are attributed to generation of lysinoalanine, amide (isopeptide) and/or ester covalent cross-links. The unique ability to stabilize material by controlling secondary structure rearrangement and covalent cross-linking allows us to design recombinant silk materials with a wide range of properties.


PLOS ONE | 2012

Silk from Crickets: A New Twist on Spinning

Andrew A. Walker; Sarah Weisman; Jeffrey S. Church; David J. Merritt; Stephen T. Mudie; Tara D. Sutherland

Raspy crickets (Orthoptera: Gryllacrididae) are unique among the orthopterans in producing silk, which is used to build shelters. This work studied the material composition and the fabrication of cricket silk for the first time. We examined silk-webs produced in captivity, which comprised cylindrical fibers and flat films. Spectra obtained from micro-Raman experiments indicated that the silk is composed of protein, primarily in a beta-sheet conformation, and that fibers and films are almost identical in terms of amino acid composition and secondary structure. The primary sequences of four silk proteins were identified through a mass spectrometry/cDNA library approach. The most abundant silk protein was large in size (300 and 220 kDa variants), rich in alanine, glycine and serine, and contained repetitive sequence motifs; these are features which are shared with several known beta-sheet forming silk proteins. Convergent evolution at the molecular level contrasts with development by crickets of a novel mechanism for silk fabrication. After secretion of cricket silk proteins by the labial glands they are fabricated into mature silk by the labium-hypopharynx, which is modified to allow the controlled formation of either fibers or films. Protein folding into beta-sheet structure during silk fabrication is not driven by shear forces, as is reported for other silks.

Collaboration


Dive into the Sarah Weisman's collaboration.

Top Co-Authors

Avatar

Tara D. Sutherland

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Victoria S. Haritos

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Holly E. Trueman

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Alagacone Sriskantha

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Andrew A. Walker

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Jeffrey S. Church

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Peter M. Campbell

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Shoko Okada

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mickey G. Huson

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Researchain Logo
Decentralizing Knowledge