Sarah Willkomm
University of Lübeck
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sarah Willkomm.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Andrea Deerberg; Sarah Willkomm; Tobias Restle
Significance Argonaute (Ago) proteins are the key component of the RNA-induced silencing complex (RISC) and mediate RNA interference (RNAi) in association with small RNAs. Although overall the mechanism of RNAi is well understood, many molecular details of this complex process are not. The implementation of pre-steady-state kinetic techniques enabled us to develop a comprehensive minimal mechanistic model for human Ago 2 (hAgo2)-mediated target RNA binding and cleavage, dissecting binary as well as ternary complex formation and target RNA cleavage into individual substeps. The model presented provides in-depth insights into the complicated interplay of hAgo2 with small RNAs and corresponding target molecules, which in combination with available X-ray structures will eventually lead to better understanding of the underlying mechanisms of RNAi. Argonaute (Ago) proteins are the key component of the RNA-induced silencing complex and mediate RNA interference (RNAi) in association with small RNAs. Although overall the mechanism of RNAi is well understood, many molecular details of this complex process are not. Here we report about in-depth steady-state and, in particular, pre-steady-state characterization of siRNA binding, target RNA recognition, sequence-specific cleavage and product release by recombinant human Ago 2 (hAgo2). In combining our biochemical studies with crystal structures of bacterial Ago proteins and of recently released hAgo2, we relate kinetic data to conformational changes along the pathway and propose a comprehensive minimal mechanistic model describing fundamental steps during RNAi. Furthermore, in contrast to the current conception, our hAgo2 preparations are programmable with double-stranded siRNA. Accordingly, the system investigated represents a functional minimal RNA-induced silencing complex.
Life | 2015
Sarah Willkomm; Adrian Zander; Alexander Gust; Dina Grohmann
Argonaute proteins can be found in all three domains of life. In eukaryotic organisms, Argonaute is, as the functional core of the RNA-silencing machinery, critically involved in the regulation of gene expression. Despite the mechanistic and structural similarities between archaeal, bacterial and eukaryotic Argonaute proteins, the biological function of bacterial and archaeal Argonautes has remained elusive. This review discusses new findings in the field that shed light on the structure and function of Argonaute. We especially focus on archaeal Argonautes when discussing the details of the structural and dynamic features in Argonaute that promote substrate recognition and cleavage, thereby revealing differences and similarities in Argonaute biology.
Nature microbiology | 2017
Sarah Willkomm; Christine A. Oellig; Adrian Zander; Tobias Restle; Ronan Keegan; Dina Grohmann; Sabine Schneider
Argonaute (Ago) proteins in eukaryotes are known as key players in post-transcriptional gene silencing1, while recent studies on prokaryotic Agos hint at their role in the protection against invading DNA2,3. Here, we present crystal structures of the apo enzyme and a binary Ago-guide complex of the archaeal Methanocaldococcus jannaschii (Mj) Ago. Binding of a guide DNA leads to large structural rearrangements. This includes the structural transformation of a hinge region containing a switch helix, which has been shown for human Ago2 to be critical for the dynamic target search process4–6. To identify key residues crucial for MjAgo function, we analysed the effect of several MjAgo mutants. We observe that the nature of the 3′ and 5′ nucleotides in particular, as well as the switch helix, appear to impact MjAgo cleavage activity. In summary, we provide insights into the molecular mechanisms that drive DNA-guided DNA silencing by an archaeal Ago.
Nature microbiology | 2017
Adrian Zander; Sarah Willkomm; Sapir Ofer; Marleen van Wolferen; Luisa Egert; Sabine Buchmeier; Sarah Stöckl; Philip Tinnefeld; Sabine Schneider; Andreas Klingl; Sonja-Verena Albers; Finn Werner; Dina Grohmann
Prokaryotic Argonaute proteins acquire guide strands derived from invading or mobile genetic elements, via an unknown pathway, to direct guide-dependent cleavage of foreign DNA. Here, we report that Argonaute from the archaeal organism Methanocaldococcus jannaschii (MjAgo) possesses two modes of action: the canonical guide-dependent endonuclease activity and a non-guided DNA endonuclease activity. The latter allows MjAgo to process long double-stranded DNAs, including circular plasmid DNAs and genomic DNAs. Degradation of substrates in a guide-independent fashion primes MjAgo for subsequent rounds of DNA cleavage. Chromatinized genomic DNA is resistant to MjAgo degradation, and recombinant histones protect DNA from cleavage in vitro. Mutational analysis shows that key residues important for guide-dependent target processing are also involved in guide-independent MjAgo function. This is the first characterization of guide-independent cleavage activity for an Argonaute protein potentially serving as a guide biogenesis pathway in a prokaryotic system.
Nucleic Acids Research | 2015
Simon Dornseifer; Sarah Willkomm; Rosel Kretschmer-Kazemi Far; Janine Liebschwager; Foteini Beltsiou; Kirsten Frank; Sandra D. Laufer; Thomas Martinetz; Georg Sczakiel; Jens Christian Claussen; Tobias Restle
The discovery of RNA interference (RNAi) gave rise to the development of new nucleic acid-based technologies as powerful investigational tools and potential therapeutics. Mechanistic key details of RNAi in humans need to be deciphered yet, before such approaches take root in biomedicine and molecular therapy. We developed and validated an in silico-based model of siRNA-mediated RNAi in human cells in order to link in vitro-derived pre-steady state kinetic data with a quantitative and time-resolved understanding of RNAi on the cellular level. The observation that product release by Argonaute 2 is accelerated in the presence of an excess of target RNA in vitro inspired us to suggest an associative mechanism for the RNA slicer reaction where incoming target mRNAs actively promote dissociation of cleaved mRNA fragments. This novel associative model is compatible with high multiple turnover rates of RNAi-based gene silencing in living cells and accounts for target mRNA concentration-dependent enhancement of the RNAi machinery.
International Journal of Molecular Sciences | 2015
Sarah Willkomm; Tobias Restle
Argonaute (Ago) proteins are key players of nucleic acid-based interference mechanisms. Their domains and structural organization are widely conserved in all three domains of life. However, different Ago proteins display various substrate preferences. While some Ago proteins are able to use several substrates, others are limited to a single one. Thereby, they were demonstrated to act specifically on their preferred substrates. Here, we discuss mechanisms of Ago-mediated silencing in relation to structural and biochemical insights. The combination of biochemical and structural information enables detailed analyses of the complex dynamic interplay between Ago proteins and their substrates. Especially, transient binding data allow precise investigations of structural transitions taking place upon Ago-mediated guide and target binding.
PLOS ONE | 2016
Sarah Willkomm; Adrian Zander; Dina Grohmann; Tobias Restle
Argonaute (Ago) proteins from all three domains of life are key players in processes that specifically regulate cellular nucleic acid levels. Some of these Ago proteins, among them human Argonaute2 (hAgo2) and Ago from the archaeal organism Methanocaldococcus jannaschii (MjAgo), are able to cleave nucleic acid target strands that are recognised via an Ago-associated complementary guide strand. Here we present an in-depth kinetic side-by-side analysis of hAgo2 and MjAgo guide and target substrate binding as well as target strand cleavage, which enabled us to disclose similarities and differences in the mechanistic pathways as a function of the chemical nature of the substrate. Testing all possible guide-target combinations (i.e. RNA/RNA, RNA/DNA, DNA/RNA and DNA/DNA) with both Ago variants we demonstrate that the molecular mechanism of substrate association is highly conserved among archaeal-eukaryotic Argonautes. Furthermore, we show that hAgo2 binds RNA and DNA guide strands in the same fashion. On the other hand, despite striking homology between the two Ago variants, MjAgo cannot orientate guide RNA substrates in a way that allows interaction with the target DNA in a cleavage-compatible orientation.
International Journal of Molecular Sciences | 2015
Munishikha Kalia; Sarah Willkomm; Jens Christian Claussen; Tobias Restle; Alexandre M. J. J. Bonvin
The human Argonaute 2 (hAgo2) protein is a key player of RNA interference (RNAi). Upon complex formation with small non-coding RNAs, the protein initially interacts with the 5′-end of a given guide RNA through multiple interactions within the MID domain. This interaction has been reported to show a strong bias for U and A over C and G at the 5′-position. Performing molecular dynamics simulations of binary hAgo2/OH–guide–RNA complexes, we show that hAgo2 is a highly flexible protein capable of binding to guide strands with all four possible 5′-bases. Especially, in the case of C and G this is associated with rather large individual conformational rearrangements affecting the MID, PAZ and even the N-terminal domains to different degrees. Moreover, a 5′-G induces domain motions in the protein, which trigger a previously unreported interaction between the 5′-base and the L2 linker domain. Combining our in silico analyses with biochemical studies of recombinant hAgo2, we find that, contrary to previous observations, hAgo2 is capable of functionally accommodating guide strands regardless of the 5′-base.
PLOS ONE | 2016
Sarah Willkomm; Andrea Deerberg; Johannes Heidemann; Friedemann Flügge; Janica Meine; Rui Hu; Rosel Kretschmer-Kazemi Far; Tobias Restle
The human TAR RNA-binding protein (hTRBP) and protein activator of protein kinase R (hPACT) are important players in RNA interference (RNAi). Together with hArgonaute2 (hAgo2) and hDicer they have been reported to form the RISC-loading complex (RLC). Among other functions, hTRBP was suggested to assist the loading of hAgo2 with small interfering RNAs (siRNAs) within the RLC. Although several studies have been conducted to evaluate the specific functions of hTRBP and hPACT in RNAi, exact mechanisms and modes of action are still unknown. Here, we present a biochemical study further evaluating the role of hTRBP and hPACT in hAgo2-loading. We found that both proteins enhance hAgo2-mediated RNA cleavage significantly; even a hAgo2 mutant impaired in siRNA binding shows full cleavage activity in the presence of hTRBP or hPACT. Pre-steady state binding studies reveal that the assembly of wildtype-hAgo2 (wt-hAgo2) and siRNAs remains largely unaffected, whereas the binding of mutant hAgo2-PAZ9 to siRNA is restored by adding either hTRBP or hPACT. We conclude that both proteins assist in positioning the siRNA within hAgo2 to ensure optimal binding and cleavage. Overall, our data indicate that hTRBP and hPACT are part of a regulative system of RNAi that is important for efficient target RNA cleavage.
Methods of Molecular Biology | 2017
Sarah Willkomm; Adrian Zander; Dina Grohmann
Deciphering the molecular mechanisms of eukaryotic Argonaute proteins is crucial for the understanding of RNA interference (RNAi), a posttranscriptional gene silencing process. Fluorescence-based single-molecule studies like single-molecule Förster resonance energy transfer (FRET) between a donor and acceptor dye represent a versatile tool to gain a mechanistic understanding of the structural dynamics of a biomolecular complex. Until today it was not possible to site-specifically introduce fluorophores into eukaryotic Argonaute. Using an archaeal Argonaute variant from Methanocaldococcus jannaschii that closely resembles its eukaryotic counterpart, we site-specifically incorporated fluorescent probes into Argonaute. In this chapter, we first describe how to express archaeal Argonaute with the site-specifically engineered unnatural amino acid para-azido-L-phenylalanine (pAzF) and subsequently describe the coupling of a fluorophore exploiting the unique chemistry of the azide group of pAzF. In the second part of the chapter, we present a methodological approach that probes complex formation between acceptor-labeled archaeal Argonaute and guide and target nucleic acids equipped with a donor fluorophore which ultimately allows single-molecule FRET measurements. Furthermore we describe binding and cleavage assays that report on the functionality of Argonaute-nucleic acid complexes.