Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sarah Wulhfard is active.

Publication


Featured researches published by Sarah Wulhfard.


Clinical Cancer Research | 2012

The Antibody-Based Delivery of Interleukin-12 to the Tumor Neovasculature Eradicates Murine Models of Cancer in Combination with Paclitaxel

Nadine Pasche; Sarah Wulhfard; Francesca Pretto; Elisa Carugati; Dario Neri

Purpose: Interleukin-12 (IL12) is a potent proinflammatory cytokine with antitumor activity. Its heterodimeric nature makes it compatible with a large variety of different immunocytokine formats. Here we report the design, production, and characterization of a novel immunocytokine, based on the fusion of the F8 antibody (specific to the alternatively spliced EDA domain of fibronectin, a marker of tumor neovasculature) with IL12 (termed IL12-F8-F8). Experimental Design: We developed a novel immunocytokine based on the sequential fusion of interleukin-12 as a single polypeptide with two F8 antibodies in single-chain Fv (scFv) format. The fusion protein was characterized in vitro, and its targeting performance was assessed in vivo. The immunocytokine antitumor activity was studied as monotherapy as well as in combination therapies in three different murine tumor models. Moreover, depletion experiments and tumor analysis revealed a dominant role of natural killer cells for the mechanism of action. Results: IL12-F8-F8 can be produced in mammalian cells, yielding a product of good pharmaceutical quality, capable of selective localization on the tumor neovasculature in vivo, as judged by quantitative biodistribution analysis with radioiodinated protein preparations. The protein potently inhibited tumor growth in three different immunocompetent syngeneic models of cancer. The treatment was generally well tolerated. Moreover, the IL12-F8-F8 fusion protein could be produced both with murine IL12 (mIL12) and with human IL12 (hIL12). Conclusions: The potent antitumor activity of mIL12-F8-F8, studied alone or in combination with paclitaxel in different tumor models, paves the way to the clinical development of the fully human immunocytokine. Clin Cancer Res; 18(15); 4092–103. ©2012 AACR.


PLOS ONE | 2014

A Highly Functional Synthetic Phage Display Library Containing over 40 Billion Human Antibody Clones

Marcel Weber; Emil Bujak; Alessia Putelli; Alessandra Villa; Mattia Matasci; Laura Gualandi; Teresa Hemmerle; Sarah Wulhfard; Dario Neri

Several synthetic antibody phage display libraries have been created and used for the isolation of human monoclonal antibodies. The performance of antibody libraries, which is usually measured in terms of their ability to yield high-affinity binding specificities against target proteins of interest, depends both on technical aspects (such as library size and quality of cloning) and on design features (which influence the percentage of functional clones in the library and their ability to be used for practical applications). Here, we describe the design, construction and characterization of a combinatorial phage display library, comprising over 40 billion human antibody clones in single-chain fragment variable (scFv) format. The library was designed with the aim to obtain highly stable antibody clones, which can be affinity-purified on protein A supports, even when used in scFv format. The library was found to be highly functional, as >90% of randomly selected clones expressed the corresponding antibody. When selected against more than 15 antigens from various sources, the library always yielded specific and potent binders, at a higher frequency compared to previous antibody libraries. To demonstrate library performance in practical biomedical research projects, we isolated the human antibody G5, which reacts both against human and murine forms of the alternatively spliced BCD segment of tenascin-C, an extracellular matrix component frequently over-expressed in cancer and in chronic inflammation. The new library represents a useful source of binding specificities, both for academic research and for the development of antibody-based therapeutics.


Molecular Cancer Therapeutics | 2015

Antibody Format and Drug Release Rate Determine the Therapeutic Activity of Noninternalizing Antibody–Drug Conjugates

Rémy Gébleux; Sarah Wulhfard; Giulio Casi; Dario Neri

The development of antibody–drug conjugates (ADC), a promising class of anticancer agents, has traditionally relied on the use of antibodies capable of selective internalization in tumor cells. We have recently shown that also noninternalizing antibodies, coupled to cytotoxic drugs by means of disulfide linkers that can be cleaved in the tumor extracellular environment, can display a potent therapeutic activity. Here, we have compared the tumor-targeting properties, drug release rates, and therapeutic performance of two ADCs, based on the maytansinoid DM1 thiol drug and on the F8 antibody, directed against the alternatively spliced Extra Domain A (EDA) domain of fibronectin. The antibody was used in IgG or in small immune protein (SIP) format. In both cases, DM1 was coupled to unpaired cysteine residues, resulting in a drug-antibody ratio of 2. In biodistribution studies, SIP(F8)-SS-DM1 accumulated in the tumor and cleared from circulation more rapidly than IgG(F8)-SS-DM1. However, the ADC based on the IgG format exhibited a higher tumor uptake at later time points (e.g., 33%IA/g against 8%IA/g at 24 hours after intravenous administration). In mouse plasma, surprisingly, the ADC products in IgG format were substantially more stable compared with the SIP format (half-lives >48 hours and <3 hours at 37°C, respectively), revealing a novel mechanism for the control of disulfide-based drug release rates. Therapy experiments in immunocompetent mice bearing murine F9 tumors revealed that SIP(F8)-SS-DM1 was more efficacious than IgG(F8)-SS-DM1 when the two products were compared either in an equimolar basis or at equal milligram doses. Mol Cancer Ther; 14(11); 2606–12. ©2015 AACR.


Protein Engineering Design & Selection | 2012

A critical evaluation of the tumor-targeting properties of bispecific antibodies based on quantitative biodistribution data

Teresa Hemmerle; Sarah Wulhfard; Dario Neri

Bispecific and bifunctional antibodies are attracting considerable interest as innovative anti-cancer therapeutics, but their ability to selectively localize at the tumor site has rarely been studied by quantitative biodistribution studies in immunocompetent animal models or in patients. Here, we describe the production of a novel bifunctional antibody, consisting of the F8 antibody (specific to the alternatively spliced EDA domain of fibronectin) fused to the extracellular portion of CD86 (co-stimulatory molecule B7.2). However, the fusion molecule was unable to target tumors in vivo. These data suggest that bispecific antibodies do not always localize on tumors and should therefore be characterized by imaging or biodistribution studies.


mAbs | 2011

A novel synthetic naïve human antibody library allows the isolation of antibodies against a new epitope of oncofetal fibronectin

Alessandra Villa; Valeria Lovato; Emil Bujak; Sarah Wulhfard; Nadine Pasche; Dario Neri

Human monoclonal antibodies (mAbs) can routinely be isolated from phage display libraries against virtually any protein available in sufficient purity and quantity, but library design can influence epitope coverage on the target antigen. Here we describe the construction of a novel synthetic human antibody phage display library that incorporates hydrophilic or charged residues at position 52 of the CDR2 loop of the variable heavy chain domain, instead of the serine residue found in the corresponding germline gene. The novel library was used to isolate human mAbs to various antigens, including the alternatively-spliced EDA domain of fibronectin, a marker of tumor angiogenesis. In particular, the mAb 2H7 was proven to bind to a novel epitope on EDA, which does not overlap with the one recognized by the clinical-stage F8 antibody. F8 and 2H7 were used for the construction of chelating recombinant antibodies (CRAbs), whose tumor-targeting properties were assessed in vivo in biodistribution studies in mice bearing F9 teratocarcinoma, revealing a preferential accumulation at the tumor site.


Methods of Molecular Biology | 2014

Reformatting of scFv antibodies into the scFv-Fc format and their downstream purification.

Emil Bujak; Mattia Matasci; Dario Neri; Sarah Wulhfard

The scFv-Fc format allows for rapid characterization of candidate scFvs isolated from phage display libraries before conversion into a full-length IgG. This format offers several advantages over the phage display-derived scFv, including bivalent binding, longer half-life, and Fc-mediated effector functions. Here, a detailed method is presented, which describes the cloning, expression, and purification of an scFv-Fc fragment, starting from scFv fragments obtained from a phage display library. This method facilitates the rapid screening of candidate antibodies, prior to a more time-consuming conversion into a full IgG format. Alternatively, the scFv-Fc format may be used in the clinic for therapeutic applications.


Experimental Cell Research | 2014

Monoclonal antibodies to murine thrombospondin-1 and thrombospondin-2 reveal differential expression patterns in cancer and low antigen expression in normal tissues

Emil Bujak; Francesca Pretto; Danilo Ritz; Laura Gualandi; Sarah Wulhfard; Dario Neri

There is a considerable interest for the discovery and characterization of tumor-associated antigens, which may facilitate antibody-based pharmacodelivery strategies. Thrombospondin-1 and thrombospondin-2 are homologous secreted proteins, which have previously been reported to be overexpressed during remodeling typical for wound healing and tumor progression and to possibly play a functional role in cell proliferation, migration and apoptosis. To our knowledge, a complete immunohistochemical characterization of thrombospondins levels in normal rodent tissues has not been reported so far. Using antibody phage technology, we have generated and characterized monoclonal antibodies specific to murine thrombospondin-1 and thrombospondin-2, two antigens which share 62% aminoacid identity. An immunofluorescence analysis revealed that both antigens are virtually undetectable in normal mouse tissues, except for a weak staining of heart tissue by antibodies specific to thrombospondin-1. The analysis also showed that thrombospondin-1 was strongly expressed in 5/7 human tumors xenografted in nude mice, while it was only barely detectable in 3/8 murine tumors grafted in immunocompetent mice. By contrast, a high-affinity antibody to thrombospondin-2 revealed a much lower level of expression of this antigen in cancer specimens. Our analysis resolves ambiguities related to conflicting reports on thrombosponding expression in health and disease. Based on our findings, thrombospondin-1 (and not thrombospondin-2) may be considered as a target for antibody-based pharmacodelivery strategies, in consideration of its low expression in normal tissues and its upregulation in cancer.


Molecular Cancer Therapeutics | 2017

Potency-matched Dual Cytokine–Antibody Fusion Proteins for Cancer Therapy

Roberto De Luca; Alex Soltermann; Francesca Pretto; Catherine Pemberton-Ross; Giovanni Pellegrini; Sarah Wulhfard; Dario Neri

A novel biopharmaceutical, consisting of the F8 mAb (specific to a splice isoform of fibronectin) simultaneously fused to both TNF and IL2, was found to react with the majority of solid tumors and hematologic malignancies in mouse and man, but not with healthy adult tissues. The product selectively localized to neoplastic lesions in vivo, as evidenced by quantitative biodistribution studies using radioiodinated protein preparations. When the potency of the cytokine payloads was matched by a single-point mutation, the resulting fusion protein (IL2-F8-TNFmut) eradicated soft-tissue sarcomas in immunocompetent mice, which did not respond to individual antibody–cytokine fusion proteins or by standard doxorubicin treatment. Durable complete responses were also observed in mice bearing CT26, C1498, and F9 tumors. The simultaneous delivery of multiple proinflammatory payloads to the cancer site conferred protective immunity against subsequent tumor challenges. A fully human homolog of IL2-F8-TNFmut, which retained selectivity similar to its murine counterpart when tested on human material, may open new clinical applications for the immunotherapy of cancer. Mol Cancer Ther; 16(11); 2442–51. ©2017 AACR.


Biochemical and Biophysical Research Communications | 2012

Selection and characterization of human antibody fragments specific for psoriasin – A cancer associated protein

Anna Cyranka-Czaja; Sarah Wulhfard; Dario Neri; Jacek Otlewski

S100A7 (psoriasin) is a calcium-binding protein that is upregulated in many types of cancer and often associated with poor prognosis. Its role in carcinogenesis has been associated with the stimulation of VEGF and EGF activity. The recent research showed that psoriasin directly interacts with αvβ6 integrin, a protein related to the invasive phenotype of cancer. Moreover, this interaction promotes the αvβ6-dependent invasive activity. The important function of S100A7 in carcinoma development determines a great need for valuable tools enabling its detection, quantification and also activity inhibition. Here, we show the selection of S100A7 specific antibody fragments from the human scFv phage library ETH-2 Gold. We have selected antibody fragments specific for psoriasin, purified them and analyzed by BIAcore affinity measurements. The best clone was subjected to affinity maturation procedure yielding molecule with a subnanomolar affinity towards human S100A7 protein. Selected clone was expressed in a bivalent format and applied for immunostaining analysis, which confirmed the ability of the antigen recognition in physiological conditions. We therefore propose that obtained antibody, that is the first phage display-derived human antibody against psoriasin, can serve as a useful psoriasin binding platform in research, diagnostics and therapy of cancer.


Clinical Cancer Research | 2018

Enhanced Therapeutic Activity of Non-Internalizing Small-Molecule-Drug Conjugates Targeting Carbonic Anhydrase IX in Combination with Targeted Interleukin-2

Samuele Cazzamalli; Barbara Ziffels; Fontaine Widmayer; Patrizia Murer; Giovanni Pellegrini; Francesca Pretto; Sarah Wulhfard; Dario Neri

Purpose: Antibody–drug conjugates and small-molecule-drug conjugates have been proposed as alternatives to conventional anticancer cytotoxic agents, with the potential to deliver bioactive payloads to the site of disease, helping spare normal tissues. Experimental Design: Here, we describe a novel small-molecule-drug conjugate, based on a high-affinity ligand specific to carbonic anhydrase IX. The product featured a peptidic linker, suitable for cleavage in the tumor extracellular environment, and monomethyl auristatin E as cytotoxic payload. Results: A potent anticancer activity was observed in nude mice bearing SKRC-52 renal cell carcinoma xenografts, but no durable complete responses could be observed in this model. However, when the product was administered together with L19-IL2 (a clinical-stage fusion protein capable of delivering IL2 to the tumor neovasculature), all treated mice in the combination group could be rendered tumor free, in a process that favored the influx of natural killer cells into the tumor mass. The combination of L19-IL2 and the new small-molecule-drug conjugate also eradicated cancer in 100% of immunocompetent mice, bearing subcutaneously grafted CT26 colorectal cancer cells, which stably expressed carbonic anhydrase IX. Conclusions: These findings may be of clinical significance, because carbonic anhydrase IX is overexpressed in the majority of clear cell renal cell carcinomas and in approximately 30% of colorectal cancers. The targeted delivery of IL2 helps potentiate the action of targeted cytotoxics, leading to cancer eradication in models that cannot be cured by conventional chemotherapy. Clin Cancer Res; 24(15); 3656–67. ©2018 AACR.

Collaboration


Dive into the Sarah Wulhfard's collaboration.

Top Co-Authors

Avatar

Dario Neri

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alessia Putelli

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Barbara Ziffels

École Polytechnique Fédérale de Lausanne

View shared research outputs
Researchain Logo
Decentralizing Knowledge