Sarang M. Bhaway
University of Akron
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sarang M. Bhaway.
ACS Nano | 2016
Feng Zou; Yu-Ming Chen; Kewei Liu; Zitian Yu; Wenfeng Liang; Sarang M. Bhaway; Min Gao; Yu Zhu
Ni-based metal organic frameworks (Ni-MOFs) with unique hierarchical hollow ball-in-ball nanostructure were synthesized by solvothermal reactions. After successive carbonization and oxidation treatments, hierarchical NiO/Ni nanocrystals covered with a graphene shell were obtained with the hollow ball-in-ball nanostructure intact. The resulting materials exhibited superior performance as the anode in lithium ion batteries (LIBs): they provide high reversible specific capacity (1144 mAh/g), excellent cyclability (nearly no capacity loss after 1000 cycles) and rate performance (805 mAh/g at 15 A/g). In addition, the hierarchical NiO/Ni/Graphene composites demonstrated promising performance as anode materials for sodium-ion batteries (SIBs). Such a superior lithium and sodium storage performance is derived from the well-designed hierarchical hollow ball-in-ball structure of NiO/Ni/Graphene composites, which not only mitigates the volume expansion of NiO during the cycles but also provides a continuous highly conductive graphene matrix to facilitate the fast charge transfer and form a stable SEI layer.
Journal of Materials Chemistry | 2016
Yu-Ming Chen; Wenfeng Liang; Si Li; Feng Zou; Sarang M. Bhaway; Zhe Qiang; Min Gao; Bryan D. Vogt; Yu Zhu
A nanoporous nitrogen doped carbon matrix was prepared by carbonization of metal–organic framework zeolitic imidazolate framework (ZIF-8) precursors. The doped carbon matrix was melt-infiltrated with sulfur to form a carbonized ZIF-8/S composite. The composite material exhibited good performance as the cathode for room-temperature sodium–sulfur battery (Na–S) systems. A reversible specific capacity of around 1000 mA h g−1 could be achieved at a rate of 0.1C; and a reversible specific capacity of 500 mA h g−1 was obtained at a rate of 0.2C after 250 cycles. The good performance of the Na–S battery could be attributed to the synergistic effect from the nanoporosity of the carbon matrix and the high nitrogen-doping content (ca. ∼18 at%). These attributes enhanced the entrapment of the sulfur molecules inside the carbon matrices.
Langmuir | 2016
Siyang Wang; Pattarasai Tangvijitsakul; Zhe Qiang; Sarang M. Bhaway; Kehua Lin; Kevin A. Cavicchi; Mark D. Soucek; Bryan D. Vogt
Block copolymer templating is a versatile approach for the generation of well-defined porosity in a wide variety of framework chemistries. Here, we systematically investigate how the composition of a poly(methoxy poly[ethylene glycol] methacrylate)-block-poly(butyl acrylate) (PMPEG-PBA) template impacts the pore characteristics of mesoporous cobalt oxide films. Three templates with a constant PMPEG segment length and different hydrophilic block volume fractions of 17%, 51%, and 68% for the PMPEG-PBA are cooperatively assembled with cobalt nitrate hexahydrate and citric acid. Irrespective of template composition, a spherical nanostructure is templated and elliptical mesostructures are obtained on calcination due to uniaxial contraction of the film. The average pore size increases from 11.4 ± 2.8 to 48.5 ± 4.3 nm as the length of the PBA segment increases as determined from AFM. For all three templates examined, a maximum in porosity (∼35% in all cases) and surface area is obtained when the precursor solids contain 35-45 wt % PMPEG-PBA. This invariance suggests that the total polymer content drives the structure through interfacial assembly. The composition for maximizing porosity and surface area with the micelle-templating approach results from a general decrease in porosity with increasing cobalt nitrate hexahydrate content and the increasing mechanical integrity of the framework to resist collapse during template removal/crystallization as the cobalt nitrate hexahydrate content increases. Unlike typical evaporation induced self-assembly with sol-gel chemistry, the hydrophilic/hydrophobic composition of the block copolymer template is not a critical component to the mesostructure developed with micelle-templating using metal nitrate-citric acid as the precursor.
ACS Applied Materials & Interfaces | 2016
Sarang M. Bhaway; Yu-Ming Chen; Yuanhao Guo; Pattarasai Tangvijitsakul; Mark D. Soucek; Miko Cakmak; Yu Zhu; Bryan D. Vogt
A facile method to fabricate hierarchically structured fiber composites is described based on the electrospinning of a dope containing nickel and manganese nitrate salts, citric acid, phenolic resin, and an amphiphilic block copolymer. Carbonization of these fiber mats at 800 °C generates metallic Ni-encapsulated NiO/MnOx/carbon composite fibers with average BET surface area (150 m(2)/g) almost 3 times higher than those reported for nonporous metal oxide nanofibers. The average diameter (∼900 nm) of these fiber composites is nearly invariant of chemical composition and can be easily tuned by the dope concentration and electrospinning conditions. The metallic Ni nanoparticle encapsulation of NiO/MnOx/C fibers leads to enhanced electrical conductivity of the fibers, while the block copolymers template an internal nanoporous morphology and the carbon in these composite fibers helps to accommodate volumetric changes during charging. These attributes can lead to lithium ion battery anodes with decent rate performance and long-term cycle stability, but performance strongly depends on the composition of the composite fibers. The composite fibers produced from a dope where the metal nitrate is 66% Ni generates the anode that exhibits the highest reversible specific capacity at high rate for any composition, even when including the mass of the nonactive carbon and Ni(0) in the calculation of the capacity. On the basis of the active oxides alone, near-theoretical capacity and excellent cycling stability are achieved for this composition. These cooperatively assembled hierarchical composites provide a platform for fundamentally assessing compositional dependencies for electrochemical performance. Moreover, this electrospinning strategy is readily scalable for the fabrication of a wide variety of nanoporous transition metal oxide fibers.
Journal of Materials Chemistry | 2015
Sarang M. Bhaway; Pattarasai Tangvijitsakul; Jeongwoo Lee; Mark D. Soucek; Bryan D. Vogt
Micelle-templated ordered mesoporous nickel–cobalt carbonates and oxides are fabricated using a metal nitrate–citric acid strategy, which avoids the hydrolysis and aging requirements associated with sol–gel chemistry. A series of mesoporous NixCo(3−x)(CO3)y and NixCo(3−x)O4 films with varying Ni–Co compositions and 14 ± 4 nm mesopores are fabricated with the same block copolymer template. AFM and GISAXS analysis indicates that the mesostructure is maintained through the formation of the carbonate and oxide, while GIXD profiles confirm formation of pure spinel phases of semi-crystalline NixCo(3−x)O4. The micelle templated mesopores are interconnected and provide transport paths for the electrolyte to minimize the solid-state diffusion requirements associated with battery electrodes. These materials exhibit good performance as sodium ion battery anodes even at high current densities of 4 A g−1. Amongst the mixed-metal oxides, Ni2CoO4 exhibits the highest specific capacity of 239 mA h g−1 after galvanostatic cycling at a current density of 1 A g−1 for 10 cycles. We attribute the superior performance of Ni2CoO4 at high rates to the high surface area and short ion-diffusion paths of the nanoporous anode architecture, while the higher nickel content in the mixed metal oxide provides enhanced stability during oxide formation along with enhanced electronic conductivity, leading to improved cycling stability of the anode. This micelle template metal nitrate–citric acid method enables new possibilities for fabricating variety of ordered mesoporous mixed-metal carbonates and oxides that could be used in a wide range of applications.
ACS Applied Materials & Interfaces | 2014
Sarang M. Bhaway; Kim Kisslinger; Lihua Zhang; Kevin G. Yager; Andrew L. Schmitt; Mahesh K. Mahanthappa; Alamgir Karim; Bryan D. Vogt
Unlike other crystalline metal oxides amenable to templating by the combined assemblies of soft and hard chemistries (CASH) method, vanadium oxide nanostructures templated by poly(ethylene oxide-b-1,4-butadiene-b-ethylene oxide) (OBO) triblock copolymers are not preserved upon high temperature calcination in argon. Triconstituent cooperative assembly of a phenolic resin oligomer (resol) and an OBO triblock in a VOCl3 precursor solution enhances the carbon yield and can prevent breakout crystallization of the vanadia during calcination. However, the calcination environment significantly influences the observed mesoporous morphology in these composite thin films. Use of an argon atmosphere in this processing protocol leads to nearly complete loss of carbon-vanadium oxide thin film mesostructure, due to carbothermal reduction of vanadium oxide. This reduction mechanism also explains why the CASH method is not more generally successful for the fabrication of ordered mesoporous vanadia. Carbonization under a nitrogen atmosphere at temperatures up to 800 °C instead enables formation of a block copolymer-templated mesoporous structure, which apparently stems from the formation of a minor fraction of a stabilizing vanadium oxynitride. Thus, judicious selection of the inert gas for template removal is critical for the synthesis of well-defined, mesoporous vanadia-carbon composite films. This resol-assisted assembly method may generally apply to the fabrication of other mesoporous materials, wherein inorganic framework crystallization is problematic due to kinetically competitive carbothermal reduction processes.
ACS Nano | 2017
Sarang M. Bhaway; Zhe Qiang; Yanfeng Xia; Xuhui Xia; Byeongdu Lee; Kevin G. Yager; Lihua Zhang; Kim Kisslinger; Yu-Ming Chen; Kewei Liu; Yu Zhu; Bryan D. Vogt
Emergent lithium-ion (Li+) batteries commonly rely on nanostructuring of the active electrode materials to decrease the Li+ ion diffusion path length and to accommodate the strains associated with the insertion and de-insertion of Li+, but in many cases these nanostructures evolve during electrochemical charging-discharging. This change in the nanostructure can adversely impact performance, and challenges remain regarding how to control these changes from the perspective of morphological design. In order to address these questions, operando grazing-incidence small-angle X-ray scattering and X-ray diffraction (GISAXS/GIXD) were used to assess the structural evolution of a family of model ordered mesoporous NiCo2O4 anode films during battery operation. The pore dimensions were systematically varied and appear to impact the stability of the ordered nanostructure during the cycling. For the anodes with small mesopores (≈9 nm), the ordered nanostructure collapses during the first two charge-discharge cycles, as determined from GISAXS. This collapse is accompanied by irreversible Li-ion insertion within the oxide framework, determined from GIXD and irreversible capacity loss. Conversely, anodes with larger ordered mesopores (17-28 nm) mostly maintained their nanostructure through the first two cycles with reversible Li-ion insertion. During the second cycle, there was a small additional deformation of the mesostructure. This preservation of the ordered structure lead to significant improvement in capacity retention during these first two cycles; however, a gradual loss in the ordered nanostructure from continuing deformation of the ordered structure during additional charge-discharge cycles leads to capacity decay in battery performance. These multiscale operando measurements provide insight into how changes at the atomic scale (lithium insertion and de-insertion) are translated to the nanostructure during battery operation. Moreover, small changes in the nanostructure can build up to significant morphological transformations that adversely impact battery performance through multiple charge-discharge cycles.
Langmuir | 2017
Gustavo Guzman; Sarang M. Bhaway; Turgut Nugay; Bryan D. Vogt; Mukerrem Cakmak
Traditional hydrogels are commonly limited by poor mechanical properties and low oxygen permeability. Bimodal amphiphilic co-networks (β-APCNs) are a new class of materials that can overcome these limitations by combining hydrophilic and hydrophobic polymer chains within a network of co-continuous morphology. Applications that can benefit from these improved properties include therapeutic contact lenses, enzymatic catalysis supports, and immunoisolation membranes. The continuous hydrophobic phase could potentially increase the adsorption of plasma proteins in blood-contacting medical applications and compromise in vivo material performance, so it is critical to understand the surface characteristics of β-APCNs and adsorption of plasma proteins on β-APCNs. From real-time spectroscopic visible (Vis) ellipsometry measurements, plasma protein adsorption on β-APCNs is shown to be transport-limited. The adsorption of proteins on the β-APCNs is a multistep process with adsorption to the hydrophilic surface initially, followed by diffusion into the material to the internal hydrophilic/hydrophobic interfaces. Increasing the cross-linking of the PDMS phase reduced the protein intake by limiting the transport of large proteins. Moreover, the internalization of the proteins is confirmed by the difference between the surface-adsorbed protein layer determined from XPS and bulk thickness change from Vis ellipsometry, which can differ up to 20-fold. Desorption kinetics depend on the adsorption history with rapid desorption for slow adsorption rates (i.e., slow-diffusing proteins within the network), whereas proteins with fast adsorption kinetics do not readily desorb. This behavior can be directly related to the ability of the protein to spread or reorient, which affects the binding energy required to bind to the internal hydrophobic interfaces.
Acta Biomaterialia | 2016
Hong Chen; Jintao Yang; Shengwei Xiao; Rundong Hu; Sarang M. Bhaway; Bryan D. Vogt; Mingzhen Zhang; Qiang Chen; Jie Ma; Yung Chang; Lingyan Li; Jie Zheng
Carbon | 2015
Zhe Qiang; Yuanzhong Zhang; Yi Wang; Sarang M. Bhaway; Kevin A. Cavicchi; Bryan D. Vogt