Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sarath Vega Gutierrez is active.

Publication


Featured researches published by Sarath Vega Gutierrez.


Journal of Coatings | 2014

Utilizing Extracted Fungal Pigments for Wood Spalting: A Comparison of Induced Fungal Pigmentation to Fungal Dyeing

Sara C. Robinson; Genevieve Weber; Eric Hinsch; Sarath Vega Gutierrez; Lauren Pittis; Shawn Freitas

The lengthy time periods required by current spalting methods prohibit the economically viable commercialization of spalted wood on a large scale. This work aimed to compare the effects of induced spalting in 16 Pacific Northwest woods using three common spalting fungi, Chlorociboria aeruginosa, Scytalidium cuboideum, and Scytalidium ganodermophthorum, with the significantly less time-consuming treatment of these woods using dichloromethane-extracted green, red, and yellow pigments from the same fungi. For pigment extracts, the dosage required for a pigment to internally color various wood species to 30% internal coverage was investigated. With few exceptions, treatment with pigment extracts outperformed induced spalting in terms of percent internal color coverage. Cottonwood consistently performed best with all three pigment solutions, although chinkapin performed as well as cottonwood with the red pigment, and Port Orford cedar performed as well with the yellow pigment. While no wood species showed 30% internal color coverage with the green pigment solution, a number of additional species, including pacific silver fir, madrone, dogwood, and mountain hemlock showed internal color coverage on the order of 20–30% for red and/or yellow. Cottonwood was determined to be the best suited wood species for this type of spalting application.


Journal of Coatings Technology and Research | 2017

Potential for carrying dyes derived from spalting fungi in natural oils

Sara C. Robinson; Sarath Vega Gutierrez; Rosa Amelia Cespedes Garcia; Nicole Iroume; Nikole Renee Vorland; Amy McClelland; Megan Huber; Savannah Stanton

Wood colored internally by fungi has long been used by woodcrafters and artisans as a substitute for synthetic dyes. Recent advances in the field of spalted wood have led to methods by which the fungal dyes can be extracted from either a fungal solution or colonized wood and then reapplied to clear wood. This takes the “guess work” out of spalting, as well as the time necessary for fungal colonization; however, it requires organic solvents like dichloromethane, which are toxic and not readily available to consumers. Herein, the authors show that the dyes can be successfully carried and blended together (to increase the range of colors) in a range of natural oils. The blue–green dye of Chlorociboria species, called xylindein, carried best in raw linseed oil, the red dye of Scytalidium cuboideum performed best in Danish oil, although more dye could be carried in raw linseed oil, and the yellow dye of Scytalidium ganodermophthorum performed best in walnut oil. The ability to carry and mix these dyes in easily purchased, nontoxic oils opens up their use to woodworkers who seek to follow the traditions of spalted wood, but do not have the skills or time to work with live fungal cultures or fungal dyes suspended in toxic organic solvents.


Journal of Fungi | 2017

Microscopic Analysis of Pigments Extracted from Spalting Fungi

Sarath Vega Gutierrez; Sara C. Robinson

Pigments that are currently available in the market usually come from synthetic sources, or, if natural, often need mordants to bind to the target substrate. Recent research on the fungal pigment extracts from Scytalidium cuboideum, Scytalidium ganodermophthorum, Chlorociboria aeruginosa, and Chlorociboria aeruginascens have been shown to successfully dye materials, like wood, bamboo, and textiles, however, there is no information about their binding mechanisms. Due to this, a microscopic study was performed to provide information to future manufacturers interested in these pigments. The results of this study show that S. ganodermophthorum and C. aeruginosa form an amorphous layer on substrates, while S. cuboideum forms crystal-like structures. The attachment and morphology indicate that there might be different chemical and physical interactions between the extracted pigments and the materials. This possibility can explain the high resistance of the pigments to UV light and color fastness that makes them competitive against synthetic pigments. These properties make these pigments a viable option for an industry that demands natural pigments with the properties of the synthetic ones.


Journal of Coatings Technology and Research | 2018

Potential for fungal dyes as colorants in oil and acrylic paints

Seri Robinson; Sarath Vega Gutierrez; Rosa Amelia Cespedes Garcia; Nicole Iroume; Nikole Renee Vorland; Claudia Andersen; Igor D. de Oliveira Xaxa; Olivia Kramer; Megan Huber

Potential applications for colorants derived from the spalting fungi Chlorociboria aeruginascens, Chlorociboria aeruginosa, Scytalidium cuboideum, and Scytalidium ganodermophthorum are of growing interest across a variety of fields, from wood and textile dyes, to solar cells. Previous research found that these dyes could be carried in natural oils, specifically raw linseed oil, instead of organic solvents, thereby eliminating the toxicity issues surrounding such carriers. In this work, dyes from the aforementioned fungi were extracted, carried in raw linseed oil, and mixed with a range of oil and acrylic paints to determine if the oil carrier was appropriate for delivering the dyes into a paint matrix. The oil-based dyes did not mix evenly with the acrylic paints; however, the acrylic paints maintained the color of the dyes. In contrast, the oil-based paints mixed well with the dyes, but the dyes decolorized (completely lost color) due to the presence of refined linseed oil in the paint base. Artists’ paints do not appear to be compatible with fungal dyes when carried in oil; however, there are still many potential applications for the oil-based dyes, such as wood and textile dyeing.


Molecules | 2018

Description of a Naphthoquinonic Crystal Produced by the Fungus Scytalidium cuboideum

Sarath Vega Gutierrez; Kenya Hazell; John Simonsen; Seri Robinson

Intarsia was an art form popular between the 15th–18th centuries that used wood pigmented by spalting fungi to create detailed landscapes, portraits, and other imagery. These fungi are still used today in art but are also finding relevance in material science as elements of solar cells, textile dyes, and paint colorants. Here we show that the spalting fungus Scytalidium cuboideum (Sacc. and Ellis) Sigler and Kang produces a red/pink pigment that forms two distinct colors of crystals (red and orange)—a very rare occurrence. In addition, a second structure of the crystal is proved through nuclear magnetic resonance (NMR). This is only the second instance of a stable, naphthoquinone crystal produced by a fungus. Its discovery is particularly valuable for solar cell development, as crystalline materials have a higher electrical conductivity. Other fungi in this order have shown strong potential as thin films for solar cells.


Molecules | 2018

Relationship between Molarity and Color in the Crystal (‘Dramada’) Produced by Scytalidium cuboideum, in Two Solvents

Sarath Vega Gutierrez; R. Van Court; Derek Stone; Matthew Konkler; Emily Groth; Seri Robinson

Pigments from wood-decay fungi (specifically spalting fungi) have a long history of use in wood art, and have become relevant in modern science due to their longevity and colorfastness. They are presently under investigation as colorants for wood, bamboo, oils, paints and textiles. Major hurdles to their commercialization have been color repeatability (in that the same strain of the same species of fungus may produce different colors over time), and the binding of the pigments to glass storage containers. This is persistent as they do not naturally exist in a loose form. Due to these issues, the ‘standard’ color for each was historically determined not by the amount of pigment, but by the color in a solution of dichloromethane (DCM), using the CIE L*a*b colorspace. This method of standardization severely limited the use of these pigments in industrial applications, as without a dry form, standard methodologies for repeatable color processing into other materials could not be easily implemented. Recent studies have developed a method to crystalize the red pigment from Scytalidium cuboideum (Sacc. & Ellis) Sigler & Kang, producing a highly pure (99%) solid crystal named ‘Dramada’. Herein a method is detailed to compare the molarity of this crystallized pigment to variations in the color, to determine a color saturation curve (by weight) for the pigment from S. cuboideum in DCM and acetone. The molarities for this experiment ranged from 0.024 mM to 19 mM. Each molarity was color read and assigned a CIEL*a*b* value. The results showed that there was a correlation between the molarity and color difference, with the maximum red color occurring between 0.73 mM and 7.3 mM in DCM and between 0.97 mM to 0.73 mM in acetone. Extremely low molarities of pigment produced strong coloration in the solvent, and changes in molarity significantly affected the color of the solution. Having a saturation and color curve for the crystal ‘Dramada’ from S. cuboideum will allow for the reliable production of distinct colors from a known quantity (by weight) of pigment, erasing the final hurdle towards commercial development of the crystallized pigment from S. cuboideum as an industrial dyestuff.


Materials | 2018

Alternative Carrier Solvents for Pigments Extracted from Spalting Fungi

Lauren Pittis; Diego Rodrigues de Oliveira; Sarath Vega Gutierrez; Seri Robinson

The use of both naturally occurring and synthetic pigmented wood has been prevalent in woodcraft for centuries. Modern manifestations generally involve either woodworkers’ aniline dyes, or pigments derived from a special class of fungi known as spalting fungi. While fungal pigments are more renewable than anilines and pose less of an environmental risk, the carrier required for these pigments—dichloromethane (DCM)—is both problematic for humans and tends to only deposit the pigments on the surface of wood instead of evenly within the material. Internal coloration of wood is key to adoption of a pigmenting system by woodworkers. To address this issue, five solvents that had moderate solubility with the pigments extracted from Chlorociboria aeruginosa and Scytalidium cuboideum were identified, in the hopes that a reduction in solubility would result in a greater amount of the pigment deposited inside the wood. Of the tested solvents, acetonitrile was found to produce the highest internal color in ash, Douglas-fir, madrone, mountain hemlock, Port-Orford cedar, Pacific silver fir, red alder and sugar maple. While these carrier solvents are not ideal for extracting the pigments from the fungi, acetonitrile in particular does appear to allow for more pigment to be deposited within wood. The use of acetonitrile over DCM offers new opportunities for possible industrial spalting applications, in which larger pieces of wood could be uniformly pigmented and sold to the end user in larger quantities than are currently available with spalted wood.


THE Coatings | 2016

Feasibility of Coloring Bamboo with the Application of Natural and Extracted Fungal Pigments

Sarath Vega Gutierrez; Patricia Vega Gutierrez; Auna Godinez; Lauren Pittis; Megan Huber; Savannah Stanton; Sara C. Robinson


THE Coatings | 2017

Wood-Rotting Fungal Pigments as Colorant Coatings on Oil-Based Textile Dyes

Mardonio Palomino Agurto; Sarath Vega Gutierrez; Hsiou-Lien Chen; Seri Robinson


MRS Advances | 2018

Fungi-Derived Pigments for Sustainable Organic (Opto)Electronics

Gregory Giesbers; Jonathan Van Schenck; Sarath Vega Gutierrez; Sara C. Robinson; Oksana Ostroverkhova

Collaboration


Dive into the Sarath Vega Gutierrez's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Megan Huber

Oregon State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge