Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Saravanan Prabhu Nadarajan is active.

Publication


Featured researches published by Saravanan Prabhu Nadarajan.


Trends in Biotechnology | 2015

Unnatural amino acid mutagenesis-based enzyme engineering

Yuvaraj Ravikumar; Saravanan Prabhu Nadarajan; Tae Hyeon Yoo; Chong-Soon Lee; Hyungdon Yun

Traditional enzyme engineering relies on substituting one amino acid by one of the other 19 natural amino acids to change the functional properties of an enzyme. However, incorporation of unnatural amino acids (UAAs) has been harnessed to engineer efficient enzymes for biocatalysis. Residue-specific and site-specific in vivo incorporation methods are becoming the preferred approach for producing enzymes with altered or improved functions. We describe the contribution of in vivo UAA incorporation methodologies to enzyme engineering as well as the future prospects for the field, including the integration of UAAs with other new advances in enzyme engineering.


Enzyme and Microbial Technology | 2016

Biochemical characterization of thermostable ω-transaminase from Sphaerobacter thermophilus and its application for producing aromatic β- and γ-amino acids.

Sam Mathew; Saravanan Prabhu Nadarajan; Taeowan Chung; Hyun Ho Park; Hyungdon Yun

An (S)-ω-transaminase from the thermophilic eubacterium Sphaerobacter thermophilus was expressed and functionally characterized. The enzyme showed good stability at high temperature and in the presence of various substrates. Substrate specificity analysis showed that the enzyme had activity towards a broad range of substrates including amines, β- and γ-amino acids. The purified enzyme showed a specific activity of 3.3U/mg towards rac-β-phenylalanine at 37°C. The applicability of this enzyme as an attractive biocatalyst was demonstrated by synthesizing optically pure β- and γ-amino acids. Among the various beta and gamma amino acids produced via asymmetric synthesis, (S)-4-amino-4-(4-methoxyphenyl)-butanoic acid showed highest analytical yield (82%) with excellent enantiomeric excess (>99%).


Microbial Cell Factories | 2015

Fungal cytochrome P450 monooxygenases of Fusarium oxysporum for the synthesis of ω-hydroxy fatty acids in engineered Saccharomyces cerevisiae

Pradeepraj Durairaj; Sailesh Malla; Saravanan Prabhu Nadarajan; Pyung-Gang Lee; Eunok Jung; Hyun Ho Park; Byung-Gee Kim; Hyungdon Yun

BackgroundOmega hydroxy fatty acids (ω-OHFAs) are multifunctional compounds that act as the basis for the production of various industrial products with broad commercial and pharmaceutical implications. However, the terminal oxygenation of saturated or unsaturated fatty acids for the synthesis of ω-OHFAs is intricate to accomplish through chemocatalysis, due to the selectivity and controlled reactivity in C-H oxygenation reactions. Cytochrome P450, the ubiquitous enzyme is capable of catalyzing the selective terminal omega hydroxylation naturally in biological kingdom.ResultsTo gain a deep insight on the biochemical role of fungal P450s towards the production of omega hydroxy fatty acids, two cytochrome P450 monooxygenases from Fusarium oxysporum (FoCYP), FoCYP539A7 and FoCYP655C2; were identified, cloned, and heterologously expressed in Saccharomyces cerevisiae. For the efficient production of ω-OHFAs, the S. cerevisiae was engineered to disrupt the acyl-CoA oxidase enzyme and the β-oxidation pathway inactivated (ΔPox1) S. cerevisiae mutant was generated. To elucidate the significance of the interaction of redox mechanism, FoCYPs were reconstituted with the heterologous and homologous reductase systems - S. cerevisiae CPR (ScCPR) and F. oxysporum CPR (FoCPR). To further improve the yield, the effect of pH was analyzed and the homologous FoCYP-FoCPR system efficiently hydroxylated caprylic acid, capric acid and lauric acid into their respective ω-hydroxy fatty acids with 56%, 79% and 67% conversion. Furthermore, based on computational simulations, we identified the key residues (Asn106 of FoCYP539A7 and Arg235 of FoCYP655C2) responsible for the recognition of fatty acids and demonstrated the structural insights of the active site of FoCYPs.ConclusionFungal CYP monooxygenases, FoCYP539A7 and FoCYP655C2 with its homologous redox partner, FoCPR constitutes a promising catalyst due to its high regio- and stereo-selectivity in the hydroxylation of fatty acids and in the substantial production of industrially valuable ω-hydroxy fatty acids.


Chemcatchem | 2015

Engineering Transaminase for Stability Enhancement and Site‐Specific Immobilization through Multiple Noncanonical Amino Acids Incorporation

Kanagavel Deepankumar; Saravanan Prabhu Nadarajan; Sam Mathew; Sun-Gu Lee; Tae Hyeon Yoo; Eun Young Hong; Byung-Gee Kim; Hyungdon Yun

In general, conventional enzyme engineering utilizes 20 canonical amino acids to alter and improve the functional properties of proteins such as stability, and activity. In this study, we utilized the noncanonical amino acid incorporation technique to enhance the functional properties of ω‐transaminase (ω‐TA). Herein, we enhanced the stability of ω‐TA by residue‐specific incorporation of (4R)‐fluoroproline [(4R)‐FP] and successfully immobilized onto chitosan or polystyrene (PS) beads with site‐specifically incorporated L‐3,4‐dihydroxyphenylalanine (DOPA) moiety. The immobilization of ω‐TAdopa and ω‐TAdp[(4R)‐FP] onto PS beads showed excellent reusability for 10 cycles in the kinetic resolution of chiral amines. Compared to the ω‐TAdopa, the ω‐TAdp[(4R)‐FP] immobilized onto PS beads exerted more stability that can serve as suitable biocatalyst for the asymmetric synthesis of chiral amines.


Biotechnology Journal | 2015

Incorporating unnatural amino acids to engineer biocatalysts for industrial bioprocess applications.

Yuvaraj Ravikumar; Saravanan Prabhu Nadarajan; Tae Hyeon Yoo; Chong-Soon Lee; Hyungdon Yun

The bioprocess engineering with biocatalysts broadly spans its development and actual application of enzymes in an industrial context. Recently, both the use of bioprocess engineering and the development and employment of enzyme engineering techniques have been increasing rapidly. Importantly, engineering techniques that incorporate unnatural amino acids (UAAs) in vivo has begun to produce enzymes with greater stability and altered catalytic properties. Despite the growth of this technique, its potential value in bioprocess applications remains to be fully exploited. In this review, we explore the methodologies involved in UAA incorporation as well as ways to synthesize these UAAs. In addition, we summarize recent efforts to increase the yield of UAA engineered proteins in Escherichia coli and also the application of this tool in enzyme engineering. Furthermore, this protein engineering tool based on the incorporation of UAA can be used to develop immobilized enzymes that are ideal for bioprocess applications. Considering the potential of this tool and by exploiting these engineered enzymes, we expect the field of bioprocess engineering to open up new opportunities for biocatalysis in the near future.


Journal of Biotechnology | 2015

Production of chiral β-amino acids using ω-transaminase from Burkholderia graminis

Sam Mathew; Hanseop Bea; Saravanan Prabhu Nadarajan; Taeowan Chung; Hyungdon Yun

Optically pure β-amino acids are of high pharmacological significance since they are used as key ingredients in many physiologically active compounds. Despite a number of enzymatic routes to these compounds, an efficient synthesis of β-amino acids continues to pose a major challenge for researchers. ω-Transaminase has emerged as an important class of enzymes for generating amine compounds. However, only a few ω-transaminases have been reported so far which show activity towards aromatic β-amino acids. In this study, (S)-ω-transaminase from Burkholderia graminis C4D1M has been functionally characterized and used for the production of chiral aromatic β-amino acids via kinetic resolution. The enzyme showed a specific activity of 3.1 U/mg towards rac-β-phenylalanine at 37°C. The Km and Kcat values of this enzyme towards rac-β-phenylalanine with pyruvate as the amino acceptor were 2.88 mM and 91.57 min(-1) respectively. Using this enzyme, racemic β-amino acids were kinetically resolved to produce (R)-β-amino acids with an excellent enantiomeric excess (> 99%) and ∼ 50% conversion. Additionally, kinetic resolution of aromatic β-amino acids was performed using benzaldehyde as a cheap amino acceptor.


Biotechnology Journal | 2018

Biosynthesis of the Nylon 12 Monomer, ω-Aminododecanoic Acid with Novel CYP153A, AlkJ, and ω-TA Enzymes

Md. Murshidul Ahsan; Hyunwoo Jeon; Saravanan Prabhu Nadarajan; Taeowan Chung; Hee-Wang Yoo; Byung-Gee Kim; Mahesh D. Patil; Hyungdon Yun

Bioplastics are derived from renewable biomass sources, such as vegetable oils, cellulose, and starches. An important and high-performance member of the bioplastic family is Nylon 12. The biosynthesis of ω-amino dodecanoic acid (ω-AmDDA), the monomer of Nylon 12 from vegetable oil derivatives is considered as an alternative to petroleum-based monomer synthesis. In this study, for the production of ω-AmDDA from dodecanoic acid (DDA), the cascade of novel P450 (CYP153A), alcohol dehydrogenase (AlkJ), and ω-transaminase (ω-TA) is developed. The regioselective ω-hydroxylation of 1 mM DDA with near complete conversion (>99%) is achieved using a whole-cell biocatalyst co-expressing CYP153A, ferredoxin reductase and ferredoxin. When the consecutive biotransformation of ω-hydroxy dodecanoic acid (ω-OHDDA) is carried out using a whole-cell biocatalyst co-expressing AlkJ and ω-TA, 1.8 mM ω-OHDDA is converted into ω-AmDDA with 87% conversion in 3 h. Finally, when a one-pot reaction is carried out with 2 mM DDA using both whole-cell systems, 0.6 mM ω-AmDDA is produced after a 5 h reaction. The results demonstrated the scope of the potential cascade reaction of novel CYP153A, AlkJ, and ω-TA for the production of industrially important bioplastic monomers, amino fatty acids, from FFAs.


Biotechnology and Bioprocess Engineering | 2015

Temperature sensing using red fluorescent protein

Kanagavel Deepankumar; Saravanan Prabhu Nadarajan; Dong-Ho Bae; Kwang-Hyun Baek; Kwon-Young Choi; Hyungdon Yun

Genetically encoded fluorescent proteins are extensively utilized for labeling and imaging proteins, organelles, cell tissues, and whole organisms. In this study, we explored the feasibility of mRFP1 and its variants for measuring intracellular temperature. A linear relationship was observed between the temperature and fluorescence intensity of mRFP1 and its variants. Temperature sensitivities of E. coli expressing mRFP1, mRFP-P63A and mRFP-P63A[(4R)-FP] were −1.27%, −1.26% and −0.77%/°C, respectively. Finally, we demonstrated the potentiality of mRFP1 and its variants as an in vivo temperature sensor.


Biotechnology and Bioprocess Engineering | 2017

Evaluating the role of puckering and fluorine atom in stability and folding of fluoroproline containing proteins

Saravanan Prabhu Nadarajan; Kanagavel Deepankumar; Joo-Hyun Seo; Hyungdon Yun

In the past decade, numerous studies have been reported that the residue specific incorporation of fluorine containing analogs into protein can enhance the stability of protein. On the other hand, the incorporation of fluoroproline can enhance both stability and refolding rate of recombinant proteins. The objective of this study was to determine the reason behind the enhanced stability and refolding rate of protein by comparing GFP variants containing fluoroproline or hydroxyproline. The fluorine atom of 4-fluoroproline played a significant role in enhancing stability, and Cγ-endo puckering property of (4S)-4-fluoroproline and (4S)-4-hydroxyproline plays a key role in enhancing protein refolding rate.


Advanced Synthesis & Catalysis | 2014

Enhancing Thermostability and Organic Solvent Tolerance of ω-Transaminase through Global Incorporation of Fluorotyrosine

Kanagavel Deepankumar; Minsu Shon; Saravanan Prabhu Nadarajan; Giyoung Shin; Sam Mathew; Niraikulam Ayyadurai; Byung-Gee Kim; Seihyun Choi; Sang-Hyeup Lee; Hyungdon Yun

Collaboration


Dive into the Saravanan Prabhu Nadarajan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Byung-Gee Kim

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge