Sarbari Bhattacharya
Bangalore University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sarbari Bhattacharya.
Journal of Applied Physics | 2006
Thorsten Enz; Markus Winterer; B. Stahl; Sarbari Bhattacharya; Gerhard Miehe; Keir Foster; Claudia Fasel; Horst Hahn
Nanoparticles composed of iron and carbon have been produced by chemical vapor synthesis. A detailed structural, electronic, and magnetic characterization has been performed by several methods. The atomic arrangement in the as-prepared particles is strongly affected and stabilized by excess carbon. Small clusters of different ferrous phases are the building blocks of the particles. Due to the in situ formation of a carbonaceous shell the particles are stable against oxidation at ambient conditions. The magnetic properties are influenced by the exceptionally small particle size. The particles exhibit superparamagnetic behavior with a blocking temperature of 30K and the temperature dependence of the magnetization is governed by the finite size of the system.
Journal of Biomedical Optics | 2013
Praveen Parthasarathi; B. V. Nagesh; Yogesha Lakkegowda; Shruthi S. Iyengar; Sharath Ananthamurthy; Sarbari Bhattacharya
Abstract. We report here on studies of reorientation of human red blood cells (RBCs) in an optical trap. We have measured the time required, tre, for the plane of the RBC entering the optical trap to undergo a 90-deg rotation to acquire an edge on orientation with respect to the beam direction. This has been studied as a function of laser power, P, at the trap center. The variation of tre with increasing P shows an initial sharp decrease followed by a much smaller rate of further decrease. We find that this experimentally measured variation is not in complete agreement with the variation predicted by a theoretical model where the RBC is treated as a perfectly rigid circular disk-like body. We argue that this deviation arises due to deformation of the RBC. We further reason that this feature is dominated by the elastic behavior of the RBC membrane. We compare the studies carried out on normal RBCs with RBCs where varying conditions of membrane stiffness are expected. We propose that the value of energy used for maximum deformation possible during a reorientation process is an indicator of the membrane elasticity of the system under study.
International Journal of Nanoscience | 2011
Yogesha; A. Raghu; B. V. Nagesh; Sarbari Bhattacharya; D. C. Mohana; Sharath Ananthamurthy
A dual optical tweezer has been built around an inverted microscope with high numerical aperture objective (N.A 1.4). The setup is versatile and can be used both as a single and a dual tweezer, and in the dual mode, enables us to optically trap two micron-sized latex beads within a few microns from each other in solution. Using this setup, we report measurements of the microrheological parameters of Pseudomonas fluorescens and Bacillus subtilis bacterial suspensions. We study the variation of viscoelastic moduli of these bacterial suspensions as a function of their cell count in solution. A comparison with inactive bacteria of corresponding cell count enables us to characterize the activity of the bacterial samples in terms of an average force that the bacteria exerts on the trapped bead. This work paves way for studies of interesting nonlinear rheological phenomena at small length scales.
Journal of Biomedical Optics | 2014
B. V. Nagesh; Yogesha; Ramarao Pratibha; Praveen Parthasarathi; Shruthi S. Iyengar; Sarbari Bhattacharya; Sharath Ananthamurthy
Abstract. A normal human red blood cell (RBC) when trapped with a linearly polarized laser, reorients about the electric polarization direction and then remains rotationally bound to this direction. This behavior is expected for a birefringent object. We have measured the birefringence of distortion-free RBCs in an isotonic medium using a polarizing microscope. The birefringence is confined to the cell’s dimple region and the slow axis is along a diameter. We report an average retardation of 3.5±1.5 nm for linearly polarized green light (λ=546 nm). We also estimate a retardation of 1.87±0.09 nm from the optomechanical response of the RBC in an optical trap. We reason that the birefringence is a property of the cell membrane and propose a simple model attributing the origin of birefringence to the phospholipid molecules in the lipid bilayer and the variation to the membrane curvature. We observe that RBCs reconstituted in shape subsequent to crenation show diminished birefringence along with a sluggish optomechanical response in a trap. As the arrangement of phospholipid molecules in the cell membrane is disrupted on crenation, this lends credence to our conjecture on the origin of birefringence. Dependence of the birefringence on membrane contours is further illustrated through studies on chicken RBCs.
Applied Optics | 2016
P. Praveen; Yogesha; Shruthi S. Iyengar; Sarbari Bhattacharya; Sharath Ananthamurthy
We have studied in detail the situation wherein two microbeads are trapped axially in a single-beam Gaussian intensity profile optical trap. We find that the corner frequency extracted from a power spectral density analysis of intensity fluctuations recorded on a quadrant photodetector (QPD) is dependent on the detection scheme. Using forward- and backscattering detection schemes with single and two laser wavelengths along with computer simulations, we conclude that fluctuations detected in backscattering bear true position information of the bead encountered first in the beam propagation direction. Forward scattering, on the other hand, carries position information of both beads with substantial contribution from the bead encountered first along the beam propagation direction. Mie scattering analysis further reveals that the interference term from the scattering of the two beads contributes significantly to the signal, precluding the ability to resolve the positions of the individual beads in forward scattering. In QPD-based detection schemes, detection through backscattering, thereby, is imperative to track the true displacements of axially trapped microbeads for possible studies on light-mediated interbead interactions.
Archive | 2002
B. Stahl; Horst Hahn; Holger Schmitt; M. Ghafari; Sarbari Bhattacharya
In tunneling magneto resistance (TMR) devices the electronic and magnetic properties of the interfaces between the ferromagnetic metals and the insulating spacer layer influence the effective scattering potential for the conduction electrons. As this is especially relevant for structural and magnetic defects and inhomogeneities in the interface region, a non-destructive chemical, magnetic and electronic characterization with a sub-monolayer sensitivity is of importance.
International Conference on Optics and Photonics 2015 | 2015
A. Vijayakumar; Praveen Parthasarathi; Shruthi S. Iyengar; Rekha Selvan; Sharath Ananthamurthy; Shanti Bhattacharya; Sarbari Bhattacharya
The phase of a negative axicon is combined with that of a Fresnel zone lens (FZL) to obtain an element labelled as conical FZL, which can generate a focused ring pattern at the focal plane of the FZL. The phase integration is achieved by modifying the location and width of zones of FZL in accordance with the phase variation of the negative axicon. The element was designed for a high power laser with a wavelength of 1064 nm, focal length and diameter of conical FZL of 30 mm and 8 mm respectively and for a ring diameter of 50 μm. The element was fabricated using photolithography. The pattern was transferred from the resist layer to the borosilicate glass plates by dry etching to achieve an etch depth of 1064 nm. The etch depth measured using confocal microscope was 1034 nm at the central part and 930 nm for the outermost part of the device with a maximum error of 12.5% at the outermost part and 3% at the central part. The element was used in an optical trapping experiment. The ring pattern generated by the conical FZL was reimaged into the trapping plane using a tightly focusing microscopic objective. Polystyrene beads with diameters of 3 μm were suspended in deionized distilled water at the trapping plane. The element was found to trap multiple particles in to the same trap.
Bulletin of Materials Science | 2012
Yogesha; Sarbari Bhattacharya; M K Rabinal; Sharath Ananthamurthy
Understanding and characterizing microbial activity reduction in the presence of antimicrobial agents can help in the design and manufacture of antimicrobial drugs. We demonstrate the use of an optical tweezer setup in recording the changes in bacterial activity with time, induced by the presence of foreign bodies in a bacterial suspension. This is achieved by monitoring the fluctuations of an optically trapped polystyrene bead immersed in it. Examining the changes in the fluctuation pattern of the bead with time provides an accurate characterization of the reduction in the microbial activity. Here, we report on the effect of addition of silver nanoparticles on bacterial cultures of Pseudomonas aeroginosa,Escherichia coli and Bacillus subtilis. We observe a decrease in the bacterial activity with time for the investigated bacterial samples. This method in our opinion, enables one to track changes in bacterial activity levels as a function of time of contact with the antibacterial agent with greater efficacy than traditional cell counting methods.
Proceedings of SPIE | 2016
Shruthi S. Iyengar; Praveen Parthasarathi; Rekha Selvan; Sarbari Bhattacharya; Sharath Ananthamurthy
Optical Tweezers are capable of trapping individual particles of sizes that range from micrometers to sub micrometers. One can compute the trap strength experienced by a particle by analyzing the fluctuations in the position of the trapped particle with time. It is reported that the trap strength of a dielectric bead increases linearly with increase in the power of the trapping laser. The situation with metallic particles, however, is strongly dependent on the particle size. Available literature shows that metallic Rayleigh particles experience enhanced trap strengths when compared to dielectric particles of similar sizes due to a larger polarizability. On the contrary, micrometer sized metallic particles are poor candidates for trapping due to high reflectivity. We report here that commercially available micrometer sized metal oxide core - dielectric shell (core – shell) beads are trapped in a single beam optical tweezer in a manner similar to dielectric beads. However as the laser power is increased these core – shell beads are trapped with a reduced corner frequency, which represents a lowered trap strength, in contrast to the situation with ordinary dielectric beads. We attribute this anomaly to an increase in the temperature of the medium in the vicinity of the core – shell bead due to an enhanced dissipation of the laser power as heat. We have computed autocorrelation functions for both types of beads at various trapping laser powers and observe that the variation in the relaxation times with laser power for core - shell beads is opposite in trend to that of ordinary dielectric beads. This supports our claim of an enhanced medium temperature about the trapped core – shell bead. Since an increase in temperature should lead to a change in the local viscosity of the medium, we have estimated the ratio of viscosity to temperature for core – shell and dielectric beads of the same size. We observe that while for ordinary dielectric beads this ratio remains a constant with increasing laser power, there is a decrease for core – shell beads. We plan to extend this work towards studying the hydrodynamic correlations between a pair of trapped beads where one of the beads acts as a heat source.
Proceedings of SPIE | 2016
Praveen Parthasarathi; Shruthi S. Iyengar; Yogesha Lakkegowda; Sarbari Bhattacharya; Sharath Ananthamurthy
Interactions between trapped microspheres have been studied in two geometries so far: (i) using line optical tweezers and (ii) in traps using two counter propagating laser beams. In both trap geometries, the stable inter bead separations have been attributed to optical binding. One could also trap two such beads in a single beam Gaussian laser trap. While there are reports that address this configuration through theoretical or simulation based treatments, there has so far been no detailed experimental work that measures the interactions. In this work, we have recorded simultaneously the fluctuation spectra of two beads trapped along the laser propagation direction in a single Gaussian beam trap by measuring the back scattered signal from the trapping and a tracking laser beam that are counter propagating . The backscattering from the trapping laser monitors the bead encountered earlier in the propagation path. The counter propagating tracking laser, on the other hand, is used to monitor the fluctuations of the second bead. Detection is by using quadrant photo detectors placed at either end. The autocorrelation functions of both beads reveal marked departures from that obtained when there is only one bead in the trap. Moreover, the fall-off profiles of the autocorrelation indicates the presence of more than one relaxation time. This indicates a method of detecting the presence of a second bead in a trap without directly carrying out measurements on it. Further, a careful analysis of the relaxation times could also reveal the nature of interactions between the beads.