Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sargurunathan Subashchandrabose is active.

Publication


Featured researches published by Sargurunathan Subashchandrabose.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Host-specific induction of Escherichia coli fitness genes during human urinary tract infection

Sargurunathan Subashchandrabose; Tracy H. Hazen; Ariel R. Brumbaugh; Stephanie D. Himpsl; Sara N. Smith; Robert D. Ernst; David A. Rasko; Harry L. T. Mobley

Significance Escherichia coli is the most common cause of urinary tract infections (UTI) in humans. This bacterium is a major global public health concern because it is becoming resistant to currently available antibiotics. Therefore, it is imperative to develop new treatment and prevention strategies against this bacterium. However, the processes that promote survival of this bacterium within the human urinary tract during UTI are not clearly understood. Here we identify E. coli genes that promote survival within the urinary tract during naturally occurring UTI in women. Genes identified in this study represent targets for development of new therapies against UTI caused by E. coli. Uropathogenic Escherichia coli (UPEC) is the predominant etiological agent of uncomplicated urinary tract infection (UTI), manifested by inflammation of the urinary bladder, in humans and is a major global public health concern. Molecular pathogenesis of UPEC has been primarily examined using murine models of UTI. Translational research to develop novel therapeutics against this major pathogen, which is becoming increasingly antibiotic resistant, requires a thorough understanding of mechanisms involved in pathogenesis during human UTIs. Total RNA-sequencing (RNA-seq) and comparative transcriptional analysis of UTI samples to the UPEC isolates cultured in human urine and laboratory medium were used to identify novel fitness genes that were specifically expressed during human infection. Evidence for UPEC genes involved in ion transport, including copper efflux, nickel and potassium import systems, as key fitness factors in uropathogenesis were generated using an experimental model of UTI. Translational application of this study was investigated by targeting Cus, a bacterial copper efflux system. Copper supplementation in drinking water reduces E. coli colonization in the urinary bladder of mice. Additionally, our results suggest that anaerobic processes in UPEC are involved in promoting fitness during UTI in humans. In summary, RNA-seq was used to establish the transcriptional signature in UPEC during naturally occurring, community acquired UTI in women and multiple novel fitness genes used by UPEC during human infection were identified. The repertoire of UPEC genes involved in UTI presented here will facilitate further translational studies to develop innovative strategies against UTI caused by UPEC.


PLOS Pathogens | 2013

Genome-wide detection of fitness genes in uropathogenic Escherichia coli during systemic infection.

Sargurunathan Subashchandrabose; Sara N. Smith; Rachel R. Spurbeck; Monica M. Kole; Harry L. T. Mobley

Uropathogenic Escherichia coli (UPEC) is a leading etiological agent of bacteremia in humans. Virulence mechanisms of UPEC in the context of urinary tract infections have been subjected to extensive research. However, understanding of the fitness mechanisms used by UPEC during bacteremia and systemic infection is limited. A forward genetic screen was utilized to detect transposon insertion mutants with fitness defects during colonization of mouse spleens. An inoculum comprised of 360,000 transposon mutants in the UPEC strain CFT073, cultured from the blood of a patient with pyelonephritis, was used to inoculate mice intravenously. Transposon insertion sites in the inoculum (input) and bacteria colonizing the spleen (output) were identified using high-throughput sequencing of transposon-chromosome junctions. Using frequencies of representation of each insertion mutant in the input and output samples, 242 candidate fitness genes were identified. Co-infection experiments with each of 11 defined mutants and the wild-type strain demonstrated that 82% (9 of 11) of the tested candidate fitness genes were required for optimal fitness in a mouse model of systemic infection. Genes involved in biosynthesis of poly-N-acetyl glucosamine (pgaABCD), major and minor pilin of a type IV pilus (c2394 and c2395), oligopeptide uptake periplasmic-binding protein (oppA), sensitive to antimicrobial peptides (sapABCDF), putative outer membrane receptor (yddB), zinc metallopeptidase (pqqL), a shikimate pathway gene (c1220) and autotransporter serine proteases (pic and vat) were further characterized. Here, we report the first genome-wide identification of genes that contribute to fitness in UPEC during systemic infection in a mammalian host. These fitness factors may represent targets for developing novel therapeutics against UPEC.


Microbiology spectrum | 2015

Virulence and Fitness Determinants of Uropathogenic Escherichia coli.

Sargurunathan Subashchandrabose; Harry L. T. Mobley

Urinary tract infection (UTI) caused by uropathogenic Escherichia coli (UPEC) is a major global public health concern. Increasing antibiotic resistance found in clinical UPEC isolates underscores the immediate need for development of novel therapeutics against this pathogen. Better understanding of the fitness and virulence mechanisms that are integral to the pathogenesis of UTI will facilitate identification of novel strategies to prevent and treat infection with UPEC. Working towards that goal, the global UPEC research community has made great strides at unraveling various virulence and fitness genes. Here, we summarize major findings on virulence and fitness determinants that enable UPEC to successfully survive and colonize the urinary tract of mammalian hosts. Major sections of this chapter are devoted to the role of iron acquisition systems, metabolic pathways, fimbriae, flagella, toxins, biofilm formation, capsule, and strain-specific genes in the initiation and progression of UTIs. Transcriptomes of UPEC during experimental UTI in a murine model and naturally occurring UTI in women are compared to elucidate virulence mechanisms specifically involved in human UTI. Capitalizing on the advances in molecular pathogenesis research by translating these findings will help develop better clinical strategies for prevention and management of UTIs.


Metallomics | 2015

Back to the metal age: battle for metals at the host–pathogen interface during urinary tract infection

Sargurunathan Subashchandrabose; Harry L. T. Mobley

Urinary tract infection (UTI) represents one of the most common bacterial infections in humans and uropathogenic E. coli (UPEC) is the major causative agent of UTI in people. Research on UPEC and other bacterial pathogens causing UTI has now identified the critical role of metal transport systems in the pathogenesis of UTI. Here we review the major effectors of metal transport in bacteria and host proteins that impair metal acquisition by bacterial pathogens. In particular, we describe the studies that identified iron, zinc and nickel import and copper export as key virulence and fitness determinants during UTI. Various metal transport systems and mechanisms that govern the expression of metal transport systems are also presented here. Specific examples from UPEC and other uropathogens, when available, are presented to depict the battle for metals at the host-pathogen interface during UTI.


Infection and Immunity | 2015

Blocking Yersiniabactin Import Attenuates Extraintestinal Pathogenic Escherichia coli in Cystitis and Pyelonephritis and Represents a Novel Target To Prevent Urinary Tract Infection

Ariel R. Brumbaugh; Sara N. Smith; Sargurunathan Subashchandrabose; Stephanie D. Himpsl; Tracy H. Hazen; David A. Rasko; Harry L. T. Mobley

ABSTRACT The emergence and spread of extended-spectrum beta-lactamases and carbapenemases among common bacterial pathogens are threatening our ability to treat routine hospital- and community-acquired infections. With the pipeline for new antibiotics virtually empty, there is an urgent need to develop novel therapeutics. Bacteria require iron to establish infection, and specialized pathogen-associated iron acquisition systems like yersiniabactin, common among pathogenic species in the family Enterobacteriaceae, including multidrug-resistant Klebsiella pneumoniae and pathogenic Escherichia coli, represent potentially novel therapeutic targets. Although the yersiniabactin system was recently identified as a vaccine target for uropathogenic E. coli (UPEC)-mediated urinary tract infection (UTI), its contribution to UPEC pathogenesis is unknown. Using an E. coli mutant (strain 536ΔfyuA) unable to acquire yersiniabactin during infection, we established the yersiniabactin receptor as a UPEC virulence factor during cystitis and pyelonephritis, a fitness factor during bacteremia, and a surface-accessible target of the experimental FyuA vaccine. In addition, we determined through transcriptome sequencing (RNA-seq) analyses of RNA from E. coli causing cystitis in women that iron acquisition systems, including the yersiniabactin system, are highly expressed by bacteria during natural uncomplicated UTI. Given that yersiniabactin contributes to the virulence of several pathogenic species in the family Enterobacteriaceae, including UPEC, and is frequently associated with multidrug-resistant strains, it represents a promising novel target to combat antibiotic-resistant infections.


mSphere | 2016

Acinetobacter baumannii Genes Required for Bacterial Survival during Bloodstream Infection.

Sargurunathan Subashchandrabose; Sara N. Smith; Valerie DeOrnellas; Sebastien Crepin; Monica M. Kole; Carina Zahdeh; Harry L. T. Mobley

A. baumannii is a significant cause of bacterial bloodstream infection in humans. Since multiple antibiotic resistance is becoming more common among strains of A. baumannii, there is an urgent need to develop novel tools to treat infections caused by this dangerous pathogen. To develop knowledge-guided treatment approaches for A. baumannii, a thorough understanding of the mechanism by which this pathogen causes bloodstream infection is required. Here, using a mouse model of infection, we report the identification of A. baumannii genes that are critical for the ability of this pathogen to cause bloodstream infections. This study lays the foundation for future research on A. baumannii genes that can be targeted to develop novel therapeutics against this emerging human pathogen. ABSTRACT Acinetobacter baumannii is emerging as a leading global multiple-antibiotic-resistant nosocomial pathogen. The identity of genes essential for pathogenesis in a mammalian host remains largely unknown. Using transposon-directed insertion-site sequencing (TraDIS), we identified A. baumannii genes involved in bacterial survival in a leukopenic mouse model of bloodstream infection. Mice were inoculated with a pooled transposon mutant library derived from 109,000 mutants, and TraDIS was used to map transposon insertion sites in the genomes of bacteria in the inoculum and of bacteria recovered from mouse spleens. Unique transposon insertion sites were mapped and used to calculate a fitness factor for every insertion site based on its relative abundance in the inoculum and postinfection libraries. Eighty-nine transposon insertion mutants that were underrepresented after experimental infection in mice compared to their presence in the inocula were delineated as candidates for further evaluation. Genetically defined mutants lacking feoB (ferrous iron import), ddc (d-ala-d-ala-carboxypeptidase), and pntB (pyridine nucleotide transhydrogenase subunit) exhibited a fitness defect during systemic infection resulting from bacteremia. In vitro, these mutants, as well as a fepA (ferric enterobactin receptor) mutant, are defective in survival in human serum and within macrophages and are hypersensitive to killing by antimicrobial peptides compared to the survival of the parental strain under these conditions. Our data demonstrate that FepA is involved in the uptake of exogenous enterobactin in A. baumannii. Genetic complementation rescues the phenotypes of mutants in assays that emulate conditions encountered during infection. In summary, we have determined novel A. baumannii fitness genes involved in the pathogenesis of mammalian infection. IMPORTANCE A. baumannii is a significant cause of bacterial bloodstream infection in humans. Since multiple antibiotic resistance is becoming more common among strains of A. baumannii, there is an urgent need to develop novel tools to treat infections caused by this dangerous pathogen. To develop knowledge-guided treatment approaches for A. baumannii, a thorough understanding of the mechanism by which this pathogen causes bloodstream infection is required. Here, using a mouse model of infection, we report the identification of A. baumannii genes that are critical for the ability of this pathogen to cause bloodstream infections. This study lays the foundation for future research on A. baumannii genes that can be targeted to develop novel therapeutics against this emerging human pathogen.


Fems Immunology and Medical Microbiology | 2013

Draft genome sequences of five recent human uropathogenic Escherichia coli isolates.

Sargurunathan Subashchandrabose; Tracy H. Hazen; David A. Rasko; Harry L. T. Mobley

This study reports the release of draft genome sequences of five isolates of uropathogenic Escherichia coli (UPEC), isolated from patients suffering from uncomplicated cystitis in 2012 in Ann Arbor, Michigan. Phylogenetic analyses revealed that these strains belonged to E. coli phylogroups B2 and D and are closely related to known UPEC strains. Comparative genomic analysis revealed that more conserved proteins were shared between these recent isolates and UPEC strains causing cystitis than those causing pyelonephritis. Additional genomic comparisons identified that three isolates encode a type III secretion system (T3SS) and a putative T3SS effector gene cluster along with an invasin-like outer membrane protein. The presence of T3SS genes is a rare occurrence among UPEC strains. These genomes further substantiate the heterogeneity of the gene pool of UPEC and provide a foundation for comparative genomic studies using recent clinical isolates.


Infection and Immunity | 2017

Copper Is a Host Effector Mobilized to Urine during Urinary Tract Infection To Impair Bacterial Colonization

Amanda N. Hyre; Kylie Kavanagh; Nancy D. Kock; George L. Donati; Sargurunathan Subashchandrabose

ABSTRACT Urinary tract infection (UTI) is a major global infectious disease affecting millions of people annually. Human urinary copper (Cu) content is elevated during UTI caused by uropathogenic Escherichia coli (UPEC). UPEC upregulates the expression of Cu efflux genes during clinical UTI in patients as an adaptive response to host-derived Cu. Whether Cu is mobilized to urine as a host response to UTI and its role in protection against UTI remain unresolved. To address these questions, we tested the hypothesis that Cu is a host effector mobilized to urine during UTI to limit bacterial growth. Our results reveal that Cu is mobilized to urine during UTI caused by the major uropathogens Proteus mirabilis and Klebsiella pneumoniae, in addition to UPEC, in humans. Ceruloplasmin, a Cu-containing ferroxidase, is found at higher levels in UTI urine than in healthy control urine and serves as the molecular source of urinary Cu during UTI. Our results demonstrate that ceruloplasmin decreases the bioavailability of iron in urine by a transferrin-dependent mechanism. Experimental UTI with UPEC in nonhuman primates recapitulates the increased urinary Cu content observed during clinical UTI. Furthermore, Cu-deficient mice are highly colonized by UPEC, indicating that Cu is involved in the limiting of bacterial growth within the urinary tract. Collectively, our results indicate that Cu is a host effector that is involved in protection against pathogen colonization of the urinary tract. Because urinary Cu levels are amenable to modulation, augmentation of the Cu-based host defense against UTI represents a novel approach to limiting bacterial colonization during UTI.


Infection and Immunity | 2017

Role of ethanolamine utilization genes in host colonization during urinary tract infection.

Anna Sintsova; Sara N. Smith; Sargurunathan Subashchandrabose; Harry L. T. Mobley

ABSTRACT Urinary tract infection (UTI) is the second most common infection in humans, making it a global health priority. Nearly half of all women will experience a symptomatic UTI, with uropathogenic Escherichia coli (UPEC) being the major causative agent of the infection. Although there has been extensive research on UPEC virulence determinants, the importance of host-specific metabolism remains understudied. We report here that UPEC upregulates the expression of ethanolamine utilization genes during uncomplicated UTIs in humans. We further show that UPEC ethanolamine metabolism is required for effective bladder colonization in the mouse model of ascending UTI and is dispensable for bladder colonization in an immunocompromised mouse model of UTI. We demonstrate that although ethanolamine metabolism mutants do not show increased susceptibility to antimicrobial responses of neutrophils, this metabolic pathway is important for surviving the innate immune system during UTI. This study reveals a novel aspect of UPEC metabolism in the host and provides evidence for an underappreciated link between bacterial metabolism and the host immune response.


Scientific Reports | 2018

Human-origin probiotic cocktail increases short-chain fatty acid production via modulation of mice and human gut microbiome

Ravinder Nagpal; Shaohua Wang; Shokouh Ahmadi; Joshua T. Hayes; Jason Gagliano; Sargurunathan Subashchandrabose; Dalane W. Kitzman; Thomas Becton; Russel Read; Hariom Yadav

The gut bacteria producing metabolites like short-chain fatty acids (SCFAs; e.g., acetate, propionate and butyrate), are frequently reduced in Patients with diabetes, obesity, autoimmune disorders, and cancers. Hence, microbiome modulators such as probiotics may be helpful in maintaining or even restoring normal gut microbiome composition to benefit host health. Herein, we developed a human-origin probiotic cocktail with the ability to modulate gut microbiota to increase native SCFA production. Following a robust protocol of isolation, characterization and safety validation of infant gut-origin Lactobacillus and Enterococcus strains with probiotic attributes (tolerance to simulated gastric and intestinal conditions, adherence to intestinal epithelial cells, absence of potential virulence genes, cell-surface hydrophobicity, and susceptibility to common antibiotics), we select 10 strains (5 from each genera) out of total 321 isolates. A single dose (oral gavage) as well as 5 consecutive doses of this 10-strain probiotic cocktail in mice modulates gut microbiome and increases SCFA production (particularly propionate and butyrate). Inoculation of these probiotics in human feces also increases SCFA production along with microbiome modulation. Results indicate that human-origin probiotic lactobacilli and enterococci could ameliorate gut microbiome dysbiosis and hence may prove to be a potential therapy for diseases involving reduced SCFAs production in the gut.

Collaboration


Dive into the Sargurunathan Subashchandrabose's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge