Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sari Matsui is active.

Publication


Featured researches published by Sari Matsui.


Journal of Oral Science | 2016

Effects of miR-223 on expression of IL-1β and IL-6 in human gingival fibroblasts

Sari Matsui; Yorimasa Ogata

MicroRNAs (miRNAs) are small non-coding RNAs that regulate post-transcriptional expression by translational inhibition or mRNA degradation. miRNAs bind to target mRNAs through partial complementarity, and can regulate many genes. In the present study, we investigated the effects of miR-223 on the expression of inflammatory cytokines in human gingival fibroblasts (HGF). To determine the effects of miR-223 on the expressions of interleukin-1β (IL-1β) and IL-6, HGF were stimulated by IL-1β (1 ng/mL) or tumor necrosis factor-α (TNF-α; 10 ng/mL) and transfected with a miR-223 expression plasmid. Levels of mRNA for IL-1β, IL-6, inhibitor of kappa-B kinase α (IKKα) and mitogen-activated protein kinase phosphatase-5 (MKP-5) were measured by real-time PCR, and levels IL-1β, IL-6 and IKKα protein were determined by enzyme-linked immunosorbent assay and Western blotting. Expression of IL-1β and IL-6 mRNAs was induced by IL-1β and TNF-α and further increased by miR-223 overexpression. IL-1β and TNF-α induced the expression of IL-1β and IL-6 mRNAs, and this was reduced by miR-223 inhibitor. Overexpression of miR-223 decreased the levels of IKKα protein and MKP-5 mRNA in HGF. These findings indicate that miR-223 might control the inflammatory response via IKKα and MKP-5 in periodontal tissue. (J Oral Sci 58, 101-108, 2016).


Connective Tissue Research | 2014

Transcriptional regulation of amelotin gene by proinflammatory cytokines in gingival fibroblasts

Yohei Nakayama; Hideki Takai; Sari Matsui; Liming Zhou; Yoshimitsu Abiko; Bernhard Ganss; Yorimasa Ogata

Abstract Amelotin (AMTN) is a secreted protein expressed during the late stages of enamel formation and in the junctional epithelium. Among many differentially expressed genes, we found significantly increased AMTN mRNA level in inflamed gingiva by DNA microarray. The inductions of AMTN mRNA expressions in inflamed gingiva and human gingival fibroblasts (HGF) were confirmed by real-time polymerase chain reaction. To determine the molecular basis of the expression of AMTN and its regulation by proinflammatory cytokines, we have isolated and characterized the promoter region of mouse AMTN gene. Transient transfection assays were performed using luciferase constructs including mouse AMTN gene promoter. Interleukin-1β, Interleukin-6 and tumor necrosis factor-α induced AMTN mRNA levels in HGF. These cytokines increased the luciferase activities of the AMTN promoter constructs in HGF. The results suggest that proinflammatory cytokines induce AMTN gene transcription and a role for AMTN in gingival inflammation.


Odontology | 2017

Localization and expression pattern of amelotin, odontogenic ameloblast-associated protein and follicular dendritic cell-secreted protein in the junctional epithelium of inflamed gingiva

Yohei Nakayama; Ryoki Kobayashi; Sari Matsui; Hiroyoshi Matsumura; Yasunobu Iwai; Keisuke Noda; Mizuho Yamazaki; Tomoko Kurita-Ochiai; Atsutoshi Yoshimura; Tamayuki Shinomura; Bernhard Ganss; Yorimasa Ogata

The purpose of this study is to elucidate the localization of amelotin (AMTN), odontogenic ameloblast-associated protein (ODAM) and follicular dendritic cell-secreted protein (FDC-SP) at the junctional epithelium (JE) in Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans infected mice and inflamed and non-inflamed human gingiva. We performed immunostaining to determine the localization and expression pattern of AMTN, ODAM and FDC-SP. AMTN, ODAM and FDC-SP in A. actinomycetemcomitans infected mice did not change dramatically compared with non-infected mice. AMTN and FDC-SP expressions were observed stronger in P. gingivalis infected mice at early stage. However, at the following stage, the coronal part of the AMTN expression disappeared from the JE, and FDC-SP expression decreased due to severe inflammation by P. gingivalis. ODAM expressed internal and external basal lamina, and the expression increased not only at early stage but also at the following stage in the inflammatory JE induced by P. gingivalis. In the human gingival tissues, AMTN was detected at the surface of the sulcular epithelium and JE in the non-inflamed and inflamed gingiva, and the localization did not change the process of inflammation. ODAM and FDC-SP were more widely detected at the sulcular epithelium and JE in the non-inflamed gingiva. In the inflamed gingiva, localization of ODAM and FDC-SP was spread into the gingival epithelium, compared to AMTN. These studies demonstrated that the expression pattern of AMTN, ODAM and FDC-SP at the JE were changed during inflammation process and these three proteins might play an important role in the resistance to inflammation.


Gene | 2014

Unliganded estrogen receptor α stimulates bone sialoprotein gene expression.

Hideki Takai; Hiroyoshi Matsumura; Sari Matsui; Kyung Mi Kim; Masaru Mezawa; Yohei Nakayama; Yorimasa Ogata

Estrogen is one of the steroid hormones essential for skeletal development. The estrogen receptor (ER) is a transcription factor and a member of the steroid receptor superfamily. There are two different forms of the ER, usually referred to as α and β, each encoded by a separate gene. Hormone-activated ERs form dimers, since the two forms are coexpressed in many cell types. Bone sialoprotein (BSP) is a tissue-specific acidic glycoprotein that is expressed by differentiated osteoblasts, odontoblasts and cementoblasts during the initial formation of mineralized tissue. To determine the molecular basis of the tissue-specific expression of BSP and its regulation by estrogen and the ER, we have analyzed the effects of β-estradiol and ERα on BSP gene transcription. ERα protein levels were increased after ERα overexpression in ROS17/2.8 cells. While BSP mRNA levels were increased by ERα overexpression, the endogenous and overexpressed BSP mRNA levels were not changed by β-estradiol (10(-8)M, 24 h). Luciferase activities of different sized BSP promoter constructs (pLUC3~6) were increased by ERα overexpression, whereas basal and induced luciferase activities by ERα overexpression were not influenced by β-estradiol. Effects of ERα overexpression were abrogated by 2 bp mutations in either the cAMP response element (CRE) or activator protein 1 (AP1)/glucocorticoid response element (GRE). Gel shift analyses showed that ERα overexpression increased binding to the CRE and AP1/GRE elements. Notably, the CRE-protein complexes were disrupted by ERα, CREB and phospho-CREB antibodies. The AP1/GRE-protein complexes were supershifted by the c-Fos antibody. These studies demonstrate that ERα stimulates BSP gene transcription in a ligand-independent manner by targeting the CRE and AP1/GRE elements in the rat BSP gene promoter.


Journal of Oral Science | 2018

TGFβ1-induced Amelotin gene expression is downregulated by Bax expression in mouse gingival epithelial cells

Yohei Nakayama; Sari Matsui; Keisuke Noda; Mizuho Yamazaki; Yasunobu Iwai; Bernhard Ganss; Yorimasa Ogata

Amelotin (AMTN) is induced upon initiation of apoptosis by transforming growth factor beta1 (TGFβ1) and is mediated by Smad3 in gingival epithelial cells (GE1 cells). This upregulation of AMTN gene expression is temporary, and the mechanism responsible is still unclear. The present study investigated the transcriptional downregulation of TGFβ1-induced AMTN gene expression in GE1 cells during the progression of apoptosis. To examine time-dependent changes in the levels of AMTN, Smad3 and Bax mRNA induced by TGFβ1, real-time PCR analyses were performed. Immunocytochemistry was carried out to detect the expression of Smad3 and Bax. Transient transfection analyses were performed using mouse AMTN gene promoter constructs of various lengths including Smad response elements (SBEs), in the presence or absence of TGFβ1. Changes in Smad3 binding to SBEs resulting from overexpression of Bax were examined using ChIP assays. Overexpression of Bax dramatically downregulated the levels of TGFβ1-induced AMTN mRNA and transcription of the AMTN gene. Smad3 binding to SBEs in the mouse AMTN gene promoter was induced by overexpression of Smad3 or TGFβ1, and this was inhibited by Bax overexpression. These results show that the levels of AMTN mRNA induced by TGFβ1 and Smad3 are decreased by robust expression of Bax in gingival epithelial cells.


Journal of Oral Science | 2018

IL-1β and TNF-α regulate mouse amelotin gene transcription in gingival epithelial cells

Keisuke Noda; Mizuho Yamazaki; Yasunobu Iwai; Sari Matsui; Ayako Kato; Hideki Takai; Yohei Nakayama; Yorimasa Ogata

Amelotin (AMTN) is an enamel protein expressed in maturation-stage ameloblasts and junctional epithelium. To clarify the transcriptional regulation of the AMTN gene by interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), we conducted real-time PCR, Western blotting, transient transfection analyses with luciferase constructs including various lengths of the mouse AMTN gene promoter, and gel shift and chromatin immunoprecipitation assays using mouse gingival epithelial GE1 cells. The levels of AMTN mRNA and protein in GE1 cells were increased after 6 h of stimulation with IL-1β (1 ng/mL) and TNF-α (10 ng/mL). IL-1β and TNF-α induced luciferase activities of the constructs between -116AMTN and -705AMTN including the mouse AMTN gene promoter. Transcriptional activation by IL-1β and TNF-α was partially inhibited in -460AMTN including 3-bp mutations in the CCAAT-enhancer-binding protein 1 (C/EBP1), C/EBP2 and Yin Yang 1 (YY1) elements. Transcriptional activities induced by IL-1β and TNF-α were inhibited by tyrosine kinase, MEK1/2 and PI3-kinase inhibitors. Results of ChIP assays showed that IL-1β and TNF-α increased C/EBPβ and YY1 binding to the C/EBP1, C/EBP2 and YY1 elements. These results demonstrate that IL-1β and TNF-α increase AMTN gene transcription via the C/EBP1, C/EBP2 and YY1 elements in the mouse AMTN gene promoter.


FEBS Open Bio | 2018

Transcriptional regulation of human amelotin gene by interleukin‐1β

Mizuho Yamazaki; Masaru Mezawa; Keisuke Noda; Yasunobu Iwai; Sari Matsui; Hideki Takai; Yohei Nakayama; Yorimasa Ogata

One of the major causes of tooth loss is chronic inflammation of the periodontium, the tissues surrounding the tooth. Amelotin (AMTN) is a tooth enamel protein which is expressed in maturation‐stage ameloblasts and also in the internal basal lamina of junctional epithelium, a unique epithelial structure attached to the tooth surface which protects against the constant microbiological challenge to the periodontium. Localization of AMTN suggests that its function could be involved in the dentogingival attachment. The purpose of this study was to investigate the effect of interleukin‐1β (IL‐1β) on AMTN gene transcription in human gingival epithelial Ca9‐22 cells. IL‐1β increased AMTN mRNA and protein levels at 3 h, and the levels reached maximum at 6 and 12 h. IL‐1β induced luciferase activities of human AMTN gene promoter constructs (−211, −353, −501, −769, and −950AMTN), but these activities were partially inhibited in −353AMTN constructs that included 3‐bp mutations in CCAAT/enhancer binding protein 1 (C/EBP1), C/EBP2, and Ying Yang 1 (YY1) elements. Transcriptional activities induced by IL‐1β were abrogated by protein kinase A (PKA), tyrosine kinase, mitogen‐activated protein kinase kinase (MEK1/2), and phosphatidylinositol 3‐kinase (PI3K) inhibitors. Gel shift and ChIP assays showed that IL‐1β increased C/EBPβ binding to C/EBP1 and C/EBP2, and YY1 binding to YY1 elements after 3 h, and that these DNA–protein interactions were inhibited by PKA, tyrosine kinase, MEK1/2, and PI3K inhibitors. These results demonstrated that IL‐1β increases AMTN gene transcription in human gingival epithelial cells mediated through C/EBP1, C/EBP2, and YY1 elements in the human AMTN gene promoter.


Journal of Oral Science | 2014

MicroRNA expression in inflamed and noninflamed gingival tissues from Japanese patients.

Yorimasa Ogata; Sari Matsui; Ayako Kato; Liming Zhou; Yohei Nakayama; Hideki Takai


Journal of Oral Science | 2014

Proinflammatory cytokines induce amelotin transcription in human gingival fibroblasts

Yohei Nakayama; Hideki Takai; Sari Matsui; Hiroyoshi Matsumura; Liming Zhou; Ayako Kato; Bernhard Ganss; Yorimasa Ogata


Apoptosis | 2016

Amelotin gene expression is temporarily being upregulated at the initiation of apoptosis induced by TGFβ1 in mouse gingival epithelial cells.

Yohei Nakayama; Sari Matsui; Keisuke Noda; Mizuho Yamazaki; Yasunobu Iwai; Hiroyoshi Matsumura; Takashi Izawa; Eiji Tanaka; Bernhard Ganss; Yorimasa Ogata

Collaboration


Dive into the Sari Matsui's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge