Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sarit Anavi is active.

Publication


Featured researches published by Sarit Anavi.


Free Radical Biology and Medicine | 2014

Mechanism for HIF-1 activation by cholesterol under normoxia: a redox signaling pathway for liver damage.

Sarit Anavi; Michal Hahn-Obercyger; Zecharia Madar; Oren Tirosh

Cholesterol and chronic activation of hypoxia-inducible factor-1 (HIF-1) have been separately implicated in the pathogenesis and progression of liver diseases. In AML12 hepatocytes increased HIF-1α protein accumulation was evident after 2 h of incubation with cholesterol, whereas enhanced HIF-1 transcriptional activity was observed after 6 h. Investigations into the molecular mechanism have shown that cholesterol inhibited HIF-1α degradation. Mitochondrial dysfunction and enhanced mitochondrial reactive oxygen species (ROS) generation were observed in 2-h cholesterol-treated cells along with augmented nitric oxide (NO) levels. Further analysis indicated that HIF-1α stabilization at later time (6h), but not after 2h, of incubation with cholesterol was dependent on NO production. To elucidate the role of mitochondrial dysfunction in HIF-1α stabilization, mitochondrial DNA-depleted hepatocytes were prepared. In these cells the ability of cholesterol to activate the HIF-1 pathway was abolished. Similarly, catalase overexpression also attenuated cholesterol-induced HIF-1α accumulation. These results demonstrate that cholesterol promotes HIF-1 activation in a ROS- and NO-dependent manner. Chronic liver activation of HIF-1 by cholesterol may mediate its deleterious effects in the liver.


Laboratory Investigation | 2015

The role of iNOS in cholesterol-induced liver fibrosis.

Sarit Anavi; Michal Eisenberg-Bord; Michal Hahn-Obercyger; Olga Genin; Mark Pines; Oren Tirosh

Accumulation of cholesterol in the liver is associated with the development of non-alcoholic steatohepatitis-related fibrosis. However, underlying mechanisms are not well understood. The present study investigated the role of inducible nitric oxide synthase (iNOS) in cholesterol-induced liver fibrosis by feeding wild-type (WT) and iNOS-deficient mice with control or high-cholesterol diet (HCD) for 6 weeks. WT mice fed with HCD developed greater liver fibrosis, compared with iNOS-deficient mice, as evident by Sirius red staining and higher expression levels of profibrotic genes. Enhanced liver fibrosis in the presence of iNOS was associated with hypoxia-inducible factor-1α stabilization, matrix metalloproteinase-9 expression, and enhanced hepatic DNA damage. The profibrotic role of iNOS was also demonstrated in vivo using a selective inhibitor of iNOS as well as in vitro in a rat liver stellate cell line (HSC-T6). In conclusion, these findings suggest that iNOS is an important mediator in HCD-induced liver fibrosis.


Free Radical Biology and Medicine | 2012

Oxidative stress impairs HIF1α activation: a novel mechanism for increased vulnerability of steatotic hepatocytes to hypoxic stress

Sarit Anavi; Noga Budick Harmelin; Zecharia Madar; Oren Tirosh

Steatosis increases the sensitivity of hepatocytes to hypoxic injury. Thus, this study was designed to elucidate the role of hypoxia-inducible factor-1α (HIF1α) in steatotic hepatocytes during hypoxia. AML12 hepatocytes and isolated rat hepatocytes were treated with a free fatty acid mixture of oleate and palmitate (2:1, 1 mM) for 18 h, which generated intrahepatocyte fat accumulation. The cells were then exposed to hypoxia (1% oxygen, 6-24 h). After hypoxia, a further increase in cellular fat accumulation was seen. In steatotic hepatocytes, a decreased HIF1α activation by hypoxia was observed. The capacity of these cells to express HIF1α-dependent genes responsible for the utilization of nutrients for energy was also impaired. This resulted in significantly lower intracellular ATP levels and greater cell death in steatotic hepatocytes compared with control hepatocytes. In contrast, overexpression of constitutively active HIF1α significantly increased cell viability as well as ATP and GLUT1 mRNA levels in steatotic hepatocytes under hypoxia. Hypoxia significantly enhanced HIF1α mRNA levels in control but not in steatotic hepatocytes. Concomitantly, an increase in oxidative stress was found in steatotic hepatocytes under hypoxic conditions compared with control cells. This included higher reactive oxygen species generation, lower cellular and nuclear GSH levels, and higher accumulation of 4-hydroxynonenal protein adducts. Hypoxia-mediated oxidative stress was accompanied by inactivation of basal nuclear factor-κB (NF-κB) DNA binding. Treatment with N-acetyl-l-cysteine, a reducing agent, improved NF-κB DNA-binding capacity and restored HIF1α induction. Conversely, overexpression of an NF-κB super-suppressor in control hepatocytes (IκBαΔN-transfected cells) resulted in complete inhibition of HIF1α expression, confirming that indeed NF-κB regulates HIF1α expression in hypoxic hepatocytes. In conclusion, hypoxia in combination with hepatic steatosis was shown to promote augmented oxidative stress, leading to NF-κB inactivation and impaired HIF1α induction and thereby increased susceptibility to hypoxic injury.


Nutrition | 2009

Nutritional lipid-induced oxidative stress leads to mitochondrial dysfunction followed by necrotic death in FaO hepatocytes

Oren Tirosh; Erez Ilan; Sarit Anavi; Giuliano Ramadori; Zecharia Madar

OBJECTIVE Mitochondrial dysfunction and hepatocyte cell death have been reported in fatty liver and non-alcoholic steatohepatitis. Our aim in this study was to evaluate whether direct exposure of hepatocytes to extracellular fat could facilitate such deleterious effects. METHODS FaO hepatic cells treated with fat was used as an in vitro model for steatosis. FaO hepatocytes were exposed to 0.1% triacylglycerols using commercially available lipid emulsion (LE) for various periods and studied for production of reactive oxygen species (ROS), mitochondrial function, and cell death parameters. To study the type of cell death, high-mobility group box chromosomal protein 1cellular levels, DNA fragmentation, and caspase activity were evaluated. RESULTS Cells incubated with LE for 6 h exhibited a marked increase in the production of intracellular ROS. Using treatments with peroxisome proliferator-activated receptor activators, mitochondrial electron-transfer chain inhibitor, and different sources of LE that did or did not contain medium-chain triacylglycerols, the mitochondria were found to be the source of ROS. LE treatment resulted in phosphorylation of adenosine monophosphate-activated protein kinase, accompanied by a decrease in adenosine triphosphate levels. Changes in intracellular ROS and energy levels were followed by cell death. FaO hepatocytes showed a significant reduction in high-mobility group box chromosomal protein-1 and little DNA fragmentation. Incubation with LE for 24 h did not change caspase-3 activity, indicating that hepatocyte death was necrotic. The antioxidant N-acetylcysteine was able to attenuate the changes in intracellular energy levels and ROS levels and to prevent cell death after exposure to LE. CONCLUSION These results suggest that exposure of FaO cells to LE leads to an increase in mitochondrial ROS production and a decrease in cellular energy levels followed by necrotic cell death.


Antioxidants & Redox Signaling | 2013

A Novel Antihypoglycemic Role of Inducible Nitric Oxide Synthase in Liver Inflammatory Response Induced by Dietary Cholesterol and Endotoxemia

Sarit Anavi; Michal Hahn-Obercyger; Raanan Margalit; Zecharia Madar; Oren Tirosh

AIMS The current study aim was to elucidate the antihypoglycemic role and mechanism of inducible nitric oxide synthase (iNOS) under inflammatory stress. METHODS Liver inflammatory stress was induced in wild-type (WT) and iNOS-knockout (iNOS(-/-)) mice by lipopolysaccharide (LPS) (5 mg/kg) with and without the background of nonalcoholic steatohepatitis (NASH)-Induced by high cholesterol diet (HCD, 6 weeks). RESULTS HCD led to steatohepatitis in WT and iNOS(-/-) mice. LPS administration caused marked liver inflammatory damage only in cholesterol-fed mice, which was further exacerbated in the absence of iNOS. Glucose homeostasis was significantly impaired and included fatal hypoglycemia and inhibition of glycogen decomposition. In iNOS(-/-) hypoxia-inducible factor-1 (HIF1), signaling was impaired compared to control WT. Using hydrodynamic gene transfer method HIF1α was expressed in the livers of iNOS(-/-) mice, and significantly ameliorated cholesterol and LPS-induced liver damage. WT mice overexpressing HIF1α exhibited higher blood glucose levels and lower glycogen contents after LPS injection. Conversely, induction of HIF1α was not effective in preventing LPS-induced glucose lowering effect in iNOS(-/-) mice. The critical role of NO signaling in hepatocytes glucose output mediated by HIF1 pathway was also confirmed in vitro. Results also demonstrated increased oxidative stress and reduced heme oxygenase-1 mRNA in the livers of iNOS(-/-) mice. Furthermore, the amounts of plasma tumor necrosis factor-α (TNFα) and intrahepatic TNFα mRNA were significantly elevated in the absence of iNOS. INNOVATION AND CONCLUSION These data highlight the essential role of iNOS in the glycemic response to LPS in NASH conditions and argues for the beneficial effects of iNOS.


Obesity | 2010

Infusion of a lipid emulsion modulates AMPK and related proteins in rat liver, muscle, and adipose tissues.

Sarit Anavi; Erez Ilan; Oren Tirosh; Zecharia Madar

The primary objective of this study was to investigate the impact of lipid oversupply on the AMPK pathway in skeletal muscle, liver, and adipose tissue. Male Wistar rats were infused with lipid emulsion (LE) or phosphate‐buffered saline for 5 h/day for 6 days. Muscles exposed to LE for 6 days exhibited increased AMPK and acetyl‐CoA carboxylase (ACC) phosphorylation, along with a greater association between AMPK and Ca2+/calmodulin‐dependent protein kinase kinase (CaMKK). No differences in muscle protein phosphatase 2C (PP2C) activity, LKB1 phosphorylation or AMPK and LKB1 association were observed. Muscle ACCβ, and adiponectin receptor 1 (AdipoR1) mRNA levels and PPARγ‐co‐activator 1α (PGC1α) protein levels were also increased in LE‐treated rats. In contrast, AMPK and ACC phosphorylation decreased and PP2C activity increased in rat livers exposed to LE. Hepatic mRNA levels of ACCα, PPARα, AdipoR1, AdipoR2, and sterol regulatory element–binding protein‐1c (SREBP1c) were also reduced after LE infusion. In adipose tissue, there was no significant alteration in AMPK or ACC phosphorylation. These results demonstrate that following lipid oversupply the AMPK pathway was enhanced in rat skeletal muscle while diminished in the liver and was unchanged in adipose tissue. CaMKK in skeletal muscle and PP2C in the liver, at least in part, appear to mediate these alterations. Alterations in AMPK pathway in the liver induced metabolic defects associated with lipid oversupply.


Redox biology | 2015

Steatosis-induced proteins adducts with lipid peroxidation products and nuclear electrophilic stress in hepatocytes.

Sarit Anavi; Zhixu Ni; Oren Tirosh; Maria Fedorova

Accumulating evidence suggests that fatty livers are particularly more susceptible to several pathological conditions, including hepatic inflammation, cirrhosis and liver cancer. However the exact mechanism of such susceptibility is still largely obscure. The current study aimed to elucidate the effect of hepatocytes lipid accumulation on the nuclear electrophilic stress. Accumulation of intracellular lipids was significantly increased in HepG2 cells incubated with fatty acid (FA) complex (1 mM, 2:1 oleic and palmitic acids). In FA-treated cells, lipid droplets were localized around the nucleus and seemed to induce mechanical force, leading to the disruption of the nucleus morphology. Level of reactive oxygen species (ROS) was significantly increased in FA-loaded cells and was further augmented by treatment with moderate stressor (CoCl2). Increased ROS resulted in formation of reactive carbonyls (aldehydes and ketones, derived from lipid peroxidation) with a strong perinuclear accumulation. Mass-spectroscopy analysis indicated that lipid accumulation per-se can results in modification of nuclear protein by reactive lipid peroxidation products (oxoLPP). 235 Modified proteins involved in transcription regulation, splicing, protein synthesis and degradation, DNA repair and lipid metabolism were identified uniquely in FA-treated cells. These findings suggest that steatosis can affect nuclear redox state, and induce modifications of nuclear proteins by reactive oxoLPP accumulated in the perinuclear space upon FA-treatment.


Lipids in Health and Disease | 2012

Fatty acids-stress attenuates gluconeogenesis induction and glucose production in primary hepatocytes

Noga Budick-Harmelin; Sarit Anavi; Zecharia Madar; Oren Tirosh

BackgroundHepatic gluconeogenesis tightly controls blood glucose levels in healthy individuals, yet disorders of fatty acids (FAs) oxidation are characterized by hypoglycemia. We studied the ability of free-FAs to directly inhibit gluconeogenesis, as a novel mechanism that elucidates the hypoglycemic effect of FAs oxidation defects.MethodsPrimary rat hepatocytes were pre-treated with FAs prior to gluconeogenic stimuli with glucagon or dexamethasone and cAMP.ResultsPre-treatment with 1 mM FAs (mixture of 2:1 oleate:palmitate) for 1 hour prior to gluconeogenic induction, significantly decreases the induced expression of the gluconeogenic genes phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6pase) as well as the induced glucose production by the cells. The inhibitory effect of FAs upon gluconeogenesis is abolished when pre-treatment is elongated to 18 hours, allowing clearance of FAs into triglycerides by the cells. Replacement of palmitate with the non-metabolic fatty acid 2-bromopalmitate inhibits esterification of FAs into triglycerides. Accordingly, the increased exposure to unesterified-FAs allows their inhibitory effect to be extended even when pre-treatment is elongated to 18 hours. Similar changes were caused by FAs to the induction of peroxisome-proliferator-activated receptor-γ coactivator 1α (PGC1α) expression, indicating this transcriptional coactivator as the mediating link of the effect. This inhibitory effect of FAs upon gluconeogenic induction is shown to involve reduced activation of cAMP response element-binding (CREB) transcription factor.ConclusionsThe present results demonstrate that free-FAs directly inhibit the induced gluconeogenic response in hepatocytes. Hence, high levels of free-FAs may attenuate hepatic gluconeogenesis, and liver glucose output.


Nitric Oxide | 2012

Nitric oxide, can it be only good? Increasing the antioxidant properties of nitric oxide in hepatocytes by YC-1 compound

Michal Aharoni-Simon; Sarit Anavi; Uwe Beifuss; Zecharia Madar; Oren Tirosh

The aim of the study was to evaluate the effect of Nitric oxide (NO) on redox changes and fat accumulation in hepatocytes. AML-12 hepatocytes were exposed to the NO donor Diethylenetriamine-NONOate (DETA-NO). DETA-NO led to a dose- and time-dependent increase in lipid accumulation in the cells, measured by Nile red fluorescence. Exposure of the cells to 1mM DETA-NO for 24h increased reactive oxygen species production, mainly peroxides. At the same time, NO induced elevation of reduced glutathione (GSH) and a mild activation of the antioxidant transcription factors Hypoxia-inducible factor 1α (HIF1α) and NF-E2 related factor 2 (Nrf-2). We used 100 μM YC-1 to inhibit HIF1α activity and induce activation of soluble Guanylate Cyclase (sGC). YC-1 alone did not affect fat accumulation, and only moderately increased the expression of Nrf-2-targeted genes Heme oxygenase 1 (Hmox1), NAD(P)H dehydrogenase (quinone 1) (Nqo1) and Glutathione S-transferase α1 (Gstα1). However, YC-1 abolished the negative effect of NO on fat accumulation when administered together. Strikingly, YC-1 potentiated the effect of NO on Nrf-2 activation, thus increasing dramatically the antioxidant properties of NO. Moreover, YC-1 intensified the effect of NO on the expression of peroxisome-proliferator-activated receptor-gamma co-activator 1α (PGC1α) and mitochondrial biogenesis markers. This study suggests that YC-1 may shift the deleterious effects of NO into the beneficial ones, and may improve the antioxidant properties of NO.


Redox biology | 2017

Non-alcoholic fatty liver disease, to struggle with the strangle: Oxygen availability in fatty livers

Sarit Anavi; Zecharia Madar; Oren Tirosh

Nonalcoholic fatty liver diseases (NAFLD) is one of the most common chronic liver disease in Western countries. Oxygen is a central component of the cellular microenvironment, which participate in the regulation of cell survival, differentiation, functions and energy metabolism. Accordingly, sufficient oxygen supply is an important factor for tissue durability, mainly in highly metabolic tissues, such as the liver. Accumulating evidence from the past few decades provides strong support for the existence of interruptions in oxygen availability in fatty livers. This outcome may be the consequence of both, impaired systemic microcirculation and cellular membrane modifications which occur under steatotic conditions. This review summarizes current knowledge regarding the main factors which can affect oxygen supply in fatty liver.

Collaboration


Dive into the Sarit Anavi's collaboration.

Top Co-Authors

Avatar

Oren Tirosh

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Zecharia Madar

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Michal Hahn-Obercyger

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Anna Aronis

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Anya Konstantinov

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Erez Ilan

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Nina Hirsch

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Zion Hagay

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Alon Samach

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Aron M. Troen

Hebrew University of Jerusalem

View shared research outputs
Researchain Logo
Decentralizing Knowledge