Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Šárka Lehtonen is active.

Publication


Featured researches published by Šárka Lehtonen.


Stem Cells | 2014

Nrf2 Regulates Neurogenesis and Protects Neural Progenitor Cells Against Aβ Toxicity

Virve Kärkkäinen; Yuriy Pomeshchik; Ekaterina Savchenko; Hiramani Dhungana; Antti Kurronen; Šárka Lehtonen; Nikolay Naumenko; Pasi Tavi; Anna-Liisa Levonen; Masayuki Yamamoto; Tarja Malm; Johanna Magga; Katja M. Kanninen; Jari Koistinaho

Neural stem/progenitor cells (NPCs) proliferate and produce new neurons in neurogenic areas throughout the lifetime. While these cells represent potential therapeutic treatment of neurodegenerative diseases, regulation of neurogenesis is not completely understood. We show that deficiency of nuclear factor erythroid 2‐related factor (Nrf2), a transcription factor induced in response to oxidative stress, prevents the ischemia‐induced increase in newborn neurons in the subgranular zone of the dentate gyrus. Consistent with this finding, the growth of NPC neurospheres was increased by lentivirus‐mediated overexpression of Nrf2 gene or by treatment with pyrrolidine dithiocarbamate (PDTC), an Nrf2 activating compound. Also, neuronal differentiation of NPCs was increased by Nrf2 overexpression or PDTC treatment but reduced by Nrf2 deficiency. To investigate the impact of Nrf2 on NPCs in Alzheimers disease (AD), we treated NPCs with amyloid beta (Aβ), a toxic peptide associated with neurodegeneration and cognitive abnormalities in AD. We found that Aβ1–42‐induced toxicity and reduction in neurosphere proliferation were prevented by Nrf2 overexpression, while Nrf2 deficiency enhanced the Aβ1–42‐induced reduction of neuronal differentiation. On the other hand, Aβ1–40 had no effect on neurosphere proliferation in wt NPCs but increased the proliferation of Nrf2 overexpressing neurospheres and reduced it in Nrf2‐deficient neurospheres. These results suggest that Nrf2 is essential for neuronal differentiation of NPCs, regulates injury‐induced neurogenesis and provides protection against Aβ‐induced NPC toxicity. Stem Cells 2014;32:1904–1916


Brain Behavior and Immunity | 2015

Interleukin-33 treatment reduces secondary injury and improves functional recovery after contusion spinal cord injury

Yuriy Pomeshchik; Iurii Kidin; Paula Korhonen; Ekaterina Savchenko; Merja Jaronen; Šárka Lehtonen; Sara Wojciechowski; Katja M. Kanninen; Jari Koistinaho; Tarja Malm

Interleukin-33 (IL-33) is a member of the interleukin-1 cytokine family and highly expressed in the naïve mouse brain and spinal cord. Despite the fact that IL-33 is known to be inducible by various inflammatory stimuli, its cellular localization in the central nervous system and role in pathological conditions is controversial. Administration of recombinant IL-33 has been shown to attenuate experimental autoimmune encephalomyelitis progression in one study, yet contradictory reports also exist. Here we investigated for the first time the pattern of IL-33 expression in the contused mouse spinal cord and demonstrated that after spinal cord injury (SCI) IL-33 was up-regulated and exhibited a nuclear localization predominantly in astrocytes. Importantly, we found that treatment with recombinant IL-33 alleviated secondary damage by significantly decreasing tissue loss, demyelination and astrogliosis in the contused mouse spinal cord, resulting in dramatically improved functional recovery. We identified both central and peripheral mechanisms of IL-33 action. In spinal cord, IL-33 treatment reduced the expression of pro-inflammatory tumor necrosis factor-alpha and promoted the activation of anti-inflammatory arginase-1 positive M2 microglia/macrophages, which chronically persisted in the injured spinal cord for up to at least 42 days after the treatment. In addition, IL-33 treatment showed a tendency towards reduced T-cell infiltration into the spinal cord. In the periphery, IL-33 treatment induced a shift towards the Th2 type cytokine profile and reduced the percentage and absolute number of cytotoxic, tumor necrosis factor-alpha expressing CD4+ cells in the spleen. Additionally, IL-33 treatment increased expression of T-regulatory cell marker FoxP3 and reduced expression of M1 marker iNOS in the spleen. Taken together, these results provide the first evidence that IL-33 administration is beneficial after CNS trauma. Treatment with IL33 may offer a novel therapeutic strategy for patients with acute contusion SCI.


Brain Research | 2008

Lack of robust protective effect of quercetin in two types of 6-hydroxydopamine-induced parkinsonian models in rats and dopaminergic cell cultures

Tiina M. Kääriäinen; Marjo Piltonen; Bernardino Ossola; Heli Kekki; Šárka Lehtonen; Terhi Nenonen; Anne Lecklin; Atso Raasmaja; Pekka T. Männistö

In the present study, we examined the ability of a flavonoid quercetin to prevent 6-hydroxydopamine (6-OHDA)-induced oxygen radical formation and cytotoxicity in vitro and neurotoxicity in vivo. Quercetin (10-100 microM) had an acute significant antioxidant effect against the 6-OHDA-induced (30 microM) oxygen radical formation in catecholaminergic SH-SY5Y neuroblastoma cells. Moreover, in these cells, quercetin at 10-50 microM had a significant protective effect against 6-OHDA though at 100 microM it was itself harmful to the cells. The possible effect of quercetin in preventing neurotoxicity in unilateral medial forebrain bundle (full nigral lesion) or striatal (partial lesion) 6-OHDA rat lesion models of Parkinsons disease was studied in three treatment schedules: a 7-day pre- or post-treatment or their combination. Rotational responses to apomorphine (0.1 mg/kg, subcutaneously) and d-amphetamine (2.5 mg/kg, intraperitoneally) were assessed at weeks 1 and 2 post-lesion. Quercetin had no consistent neuroprotective effect in either model at 50-200 mg/kg once a day or 100 mg/kg twice a day. Furthermore, no protection was observed in tyrosine hydroxylase positive nigral cell numbers, striatal fiber density or in striatal levels of dopamine. These in vitro and in vivo results cast doubt on the theory that quercetin exerts reliable neuroprotective effects against 6-OHDA-induced toxicity. In vitro, quercetin seems to be protective at low doses but damaging at high doses.


Brain Behavior and Immunity | 2015

Immunomodulation by interleukin-33 is protective in stroke through modulation of inflammation

Paula Korhonen; Katja M. Kanninen; Šárka Lehtonen; Katja A. Puttonen; Minna Oksanen; Hiramani Dhungana; Sanna Loppi; Eveliina Pollari; Sara Wojciechowski; Iurii Kidin; Teresa García-Berrocoso; Dolors Giralt; Joan Montaner; Jari Koistinaho; Tarja Malm

Cerebral stroke induces massive Th1-shifted inflammation both in the brain and the periphery, contributing to the outcome of stroke. A Th1-type response is neurotoxic whereas a Th2-type response is accompanied by secretion of anti-inflammatory cytokines, such as interleukin-4 (IL-4). Interleukin-33 (IL-33) is a cytokine known to induce a shift towards the Th2-type immune response, polarize macrophages/microglia towards the M2-type, and induce production of anti-inflammatory cytokines. We found that the plasma levels of the inhibitory IL-33 receptor, sST2, are increased in human stroke and correlate with a worsened stroke outcome, suggesting an insufficient IL-33-driven Th2-type response. In mouse, peripheral administration of IL-33 reduced stroke-induced cell death and improved the sensitivity of the contralateral front paw at 5days post injury. The IL-33-treated mice had increased levels of IL-4 in the spleen and in the peri-ischemic area of the cortex. Neutralization of IL-4 by administration of an IL-4 antibody partially prevented the IL-33-mediated protection. IL-33 treatment also reduced astrocytic activation in the peri-ischemic area and increased the number of Arginase-1 immunopositive microglia/macrophages at the lesion site. In human T-cells, IL-33 treatment induced IL-4 secretion, and the conditioned media from IL-33-exposed T-cells reduced astrocytic activation. This study demonstrates that IL-33 is protective against ischemic insult by induction of IL-4 secretion and may represent a novel therapeutic approach for the treatment of stroke.


Journal of Cellular and Molecular Medicine | 2012

Production of monocytic cells from bone marrow stem cells: therapeutic usage in Alzheimer’s disease

Johanna Magga; Ekaterina Savchenko; Tarja Malm; Taisia Rolova; Eveliina Pollari; Piia Valonen; Šárka Lehtonen; Esa Jantunen; Jussi Aarnio; Petri Lehenkari; Milla Koistinaho; Anu Muona; Jari Koistinaho

Accumulation of amyloid β (Aβ) is a major hallmark in Alzheimer’s disease (AD). Bone marrow derived monocytic cells (BMM) have been shown to reduce Aβ burden in mouse models of AD, alleviating the AD pathology. BMM have been shown to be more efficient phagocytes in AD than the endogenous brain microglia. Because BMM have a natural tendency to infiltrate into the injured area, they could be regarded as optimal candidates for cell‐based therapy in AD. In this study, we describe a method to obtain monocytic cells from BM‐derived haematopoietic stem cells (HSC). Mouse or human HSC were isolated and differentiated in the presence of macrophage colony stimulating factor (MCSF). The cells were characterized by assessing the expression profile of monocyte markers and cytokine response to inflammatory stimulus. The phagocytic capacity was determined with Aβ uptake assay in vitro and Aβ degradation assay of natively formed Aβ deposits ex vivo and in a transgenic APdE9 mouse model of AD in vivo. HSC were lentivirally transduced with enhanced green fluorescent protein (eGFP) to determine the effect of gene modification on the potential of HSC‐derived cells for therapeutic purposes. HSC‐derived monocytic cells (HSCM) displayed inflammatory responses comparable to microglia and peripheral monocytes. We also show that HSCM contributed to Aβ reduction and could be genetically modified without compromising their function. These monocytic cells could be obtained from human BM or mobilized peripheral blood HSC, indicating a potential therapeutic relevance for AD.


Toxicology Letters | 2011

Aflatoxin B1--a potential endocrine disruptor--up-regulates CYP19A1 in JEG-3 cells.

Markus Storvik; Pasi Huuskonen; Taija Kyllönen; Šárka Lehtonen; Hani El-Nezami; Seppo Auriola; Markku Pasanen

Previous studies have indicated that aromatase (CYP19A1) is involved in the metabolism of aflatoxin B1 (AFB1). We hypothesized that exposure to AFB1 contaminated food during pregnancy could disrupt the normal production of steroid hormones in placenta. We examined the capability of AFB1 exposure to disrupt CYP19A1 expression as a putative endocrine disrupter, and to investigate the metabolism of AFB1 by CYP19A1. JEG-3 cells, as model for placental cells, were exposed alone and in combination to AFB1 and estrogen receptor ligands for 24-96 h. AFB1 (0.3-1.0 μM) induced the expression of CYP19A1 by 163%-339% compared to control at the 96 h time point, although no induction was observed at 24 h. AFB1 concentrations higher than 1 μM were cytotoxic to JEG-3 cells, and the cytotoxicity was inhibited by the aromatase inhibitor, finrozole. AFB1 was metabolized to aflatoxicol (AFL) by JEG-3 cells and CYP19A1 recombinant protein. AFL formation was partially inhibited by addition of tamoxifen and finrozole to the JEG-3 cells. AFB1 had no effect on the expression of CYP1A2 and CYP3A4 in JEG-3 cells. These results reveal that AFB1 can affect the expression of aromatase enzyme, indicating that chronic exposure to AFB1 may cause endocrine disruption in the foetoplacental unit.


npj Parkinson's disease | 2016

Creation of a library of induced pluritent stem cell models from Parkinsonian patients

Staffan Holmqvist; Šárka Lehtonen; Margarita Chumarina; Katja A. Puttonen; Carla Azevedo; O. V. Lebedeva; Marika Ruponen; Minna Oksanen; Mehdi Djelloul; Anna Collin; Stefano Goldwurm; Morten Meyer; Maria A. Lagarkova; S. L. Kiselev; Jari Koistinaho; Laurent Roybon

Induced pluripotent stem cells (iPSCs) are becoming an important source of pre-clinical models for research focusing on neurodegeneration. They offer the possibility for better understanding of common and divergent pathogenic mechanisms of brain diseases. Moreover, iPSCs provide a unique opportunity to develop personalized therapeutic strategies, as well as explore early pathogenic mechanisms, since they rely on the use of patients’ own cells that are otherwise accessible only post-mortem, when neuronal death-related cellular pathways and processes are advanced and adaptive. Neurodegenerative diseases are in majority of unknown cause, but mutations in specific genes can lead to familial forms of these diseases. For example, mutations in the superoxide dismutase 1 gene lead to the motor neuron disease amyotrophic lateral sclerosis (ALS), while mutations in the SNCA gene encoding for alpha-synuclein protein lead to familial Parkinson’s disease (PD). The generations of libraries of familial human ALS iPSC lines have been described, and the iPSCs rapidly became useful models for studying cell autonomous and non-cell autonomous mechanisms of the disease. Here we report the generation of a comprehensive library of iPSC lines of familial PD and an associated synucleinopathy, multiple system atrophy (MSA). In addition, we provide examples of relevant neural cell types these iPSC can be differentiated into, and which could be used to further explore early disease mechanisms. These human cellular models will be a valuable resource for identifying common and divergent mechanisms leading to neurodegeneration in PD and MSA.


Cell Transplantation | 2015

Transplanted Human Induced Pluripotent Stem Cell-Derived Neural Progenitor Cells Do Not Promote Functional Recovery of Pharmacologically Immunosuppressed Mice With Contusion Spinal Cord Injury.

Yuriy Pomeshchik; Katja A. Puttonen; Iurii Kidin; Marika Ruponen; Šárka Lehtonen; Tarja Malm; Elisabet Åkesson; Outi Hovatta; Jari Koistinaho

Improved functional recovery after spinal cord injury by transplantation of induced pluripotent stem cell-derived neural stem/progenitor cells (iPSC-NPCs) has been reported. However, beneficial effects of iPSC-based therapy have so far been produced mostly using genetically immunodeficient rodents. Because of the long time required for generation and characterization of iPSCs, the use of autologous iPSCs for treating patients with acute spinal cord injury (SCI) is not feasible. Therefore, it is of utmost importance to investigate the effect of iPSC-based therapy on functional recovery after SCI using pharmacologically immunosuppressed, immunocompetent animal models. Here we studied the functional outcome following subacute transplantation of human iPSC-derived NPCs into contused mouse spinal cord when tacrolimus was used as an immunosuppressive agent. We show that human iPSC-derived NPCs transplanted into pharmacologically immunosuppressed C57BL/6J mice exhibited poor long-term survival and failed to improve functional recovery after SCI as measured by Basso Mouse Scale (BMS) for locomotion and CatWalk gait analysis when compared to vehicle-treated animals. The scarce effect of iPSC-based therapy observed in the current study may be attributable to insufficient immunosuppressive effect, provided by monotherapy with tacrolimus in combination with immunogenicity of transplanted cells and complex microenvironment of the injured spinal cord. Our results highlight the importance of extensive preclinical studies of transplanted cells before the clinical application of iPSC-based cell therapy is achieved.


Journal of Neuroinflammation | 2016

Pyrrolidine dithiocarbamate activates the Nrf2 pathway in astrocytes

Jeffrey R. Liddell; Šárka Lehtonen; Clare Duncan; Velta Keksa-Goldsteine; Anna-Liisa Levonen; Gundars Goldsteins; Tarja Malm; Anthony R. White; Jari Koistinaho; Katja M. Kanninen

BackgroundEndogenous defense against oxidative stress is controlled by nuclear factor erythroid 2-related factor 2 (Nrf2). The normal compensatory mechanisms to combat oxidative stress appear to be insufficient to protect against the prolonged exposure to reactive oxygen species during disease. Counterbalancing the effects of oxidative stress by up-regulation of Nrf2 signaling has been shown to be effective in various disease models where oxidative stress is implicated, including Alzheimer’s disease. Stimulation of Nrf2 signaling by small-molecule activators is an appealing strategy to up-regulate the endogenous defense mechanisms of cells.MethodsHere, we investigate Nrf2 induction by the metal chelator and known nuclear factor-κB inhibitor pyrrolidine dithiocarbamate (PDTC) in cultured astrocytes and neurons, and mouse brain. Nrf2 induction is further examined in cultures co-treated with PDTC and kinase inhibitors or amyloid-beta, and in Nrf2-deficient cultures.ResultsWe show that PDTC is a potent inducer of Nrf2 signaling specifically in astrocytes and demonstrate the critical role of Nrf2 in PDTC-mediated protection against oxidative stress. This induction appears to be regulated by both Keap1 and glycogen synthase kinase 3β. Furthermore, the presence of amyloid-beta magnifies PDTC-mediated induction of endogenous protective mechanisms, therefore suggesting that PDTC may be an effective Nrf2 inducer in the context of Alzheimer’s disease. Finally, we show that PDTC increases brain copper content and glial expression of heme oxygenase-1, and decreases lipid peroxidation in vivo, promoting a more antioxidative environment.ConclusionsPDTC activates Nrf2 and its antioxidative targets in astrocytes but not neurons. These effects may contribute to the neuroprotection observed for PDTC in models of Alzheimer’s disease.


Frontiers in Physiology | 2018

Structural Immaturity of Human iPSC-Derived Cardiomyocytes: In Silico Investigation of Effects on Function and Disease Modeling

Jussi T. Koivumäki; Nikolay Naumenko; Tomi Pekka Tuomainen; Jouni Takalo; Minna Oksanen; Katja A. Puttonen; Šárka Lehtonen; Johanna Kuusisto; Markku Laakso; Jari Koistinaho; Pasi Tavi

Background: Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have emerged as a promising experimental tool for translational heart research and drug development. However, their usability as a human adult cardiomyocyte model is limited by their functional immaturity. Our aim is to analyse quantitatively those characteristics and how they differ from adult CMs. Methods and Results: We have developed a novel in silico model with all essential functional electrophysiology and calcium handling features of hiPSC-CMs. Importantly, the virtual cell recapitulates the immature intracellular ion dynamics that are characteristic for hiPSC-CMs, as quantified based our in vitro imaging data. The strong “calcium clock” is a source for a dual function of excitation-contraction coupling in hiPSC-CMs: action potential and calcium transient morphology vary substantially depending on the activation sequence of underlying ionic currents and fluxes that is altered in spontaneous vs. paced mode. Furthermore, parallel simulations with hiPSC-CM and adult cardiomyocyte models demonstrate the central differences. Results indicate that hiPSC-CMs translate poorly the disease specific phenotypes of Brugada syndrome, long QT Syndrome and catecholaminergic polymorphic ventricular tachycardia, showing less robustness and greater tendency for arrhythmic events than adult CMs. Based on a comparative sensitivity analysis, hiPSC-CMs share some features with adult CMs, but are still functionally closer to prenatal CMs than adult CMs. A database analysis of 3000 hiPSC-CM model variants suggests that hiPSC-CMs recapitulate poorly fundamental physiological properties of adult CMs. Single modifications do not appear to solve this problem, which is mostly contributed by the immaturity of intracellular calcium handling. Conclusion: Our data indicates that translation of findings from hiPSC-CMs to human disease should be made with great caution. Furthermore, we established a mathematical platform that can be used to improve the translation from hiPSC-CMs to human, and to quantitatively evaluate hiPSC-CMs development toward more general and valuable model for human cardiac diseases.

Collaboration


Dive into the Šárka Lehtonen's collaboration.

Top Co-Authors

Avatar

Jari Koistinaho

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Katja A. Puttonen

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Katja M. Kanninen

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Tarja Malm

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Minna Oksanen

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Iurii Kidin

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Yuriy Pomeshchik

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gundars Goldsteins

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Nikolay Naumenko

University of Eastern Finland

View shared research outputs
Researchain Logo
Decentralizing Knowledge