Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Šárka Štěpánková is active.

Publication


Featured researches published by Šárka Štěpánková.


Bioorganic & Medicinal Chemistry | 2013

Synthesis and in vitro evaluation of new derivatives of 2-substituted-6-fluorobenzo[d]thiazoles as cholinesterase inhibitors

Aleš Imramovský; Vladimír Pejchal; Šárka Štěpánková; Katarína Vorčáková; Josef Jampilek; Ján Vančo; Petr Šimůnek; Karel Královec; Lenka Brůčková; Jana Mandíková; František Trejtnar

A series of novel cholinesterase inhibitors based on 2-substituted 6-fluorobenzo[d]thiazole were synthesised and characterised by IR, (1)H, (13)C and (19)F NMR spectroscopy and HRMS. Purity was checked by elemental analyses. The novel carbamates were tested for their ability to inhibit acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). The toxicity of the most active compounds was investigated using a standard in vitro test with HepG2 cells, and the ratio between biological activity and toxicity was determined. In addition, the toxicity of the most active compounds was evaluated against MCF7 cells using the xCELLigence system. Structure-activity relationships reflecting the dependence of cholinesterase inhibitors on the lipophilicity of the compounds as well as on the Taft polar and steric substituent constants are discussed. The specific orientation of the inhibitors in the binding site of acetylcholinesterase was determined using molecular docking of the most active compound.


Bioorganic & Medicinal Chemistry | 2016

Synthesis, structural characterization, docking, lipophilicity and cytotoxicity of 1-[(1R)-1-(6-fluoro-1,3-benzothiazol-2-yl)ethyl]-3-alkyl carbamates, novel acetylcholinesterase and butyrylcholinesterase pseudo-irreversible inhibitors

Vladimír Pejchal; Šárka Štěpánková; Marcela Pejchalová; Karel Královec; Radim Havelek; Zdeňka Růžičková; Haresh Ajani; Rabindranath Lo; Martin Lepšík

In the current study, sixteen novel derivatives of (R)-1-(6-fluorobenzo[d]thiazol-2-yl)ethanamine were synthesized as acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitors. Chemical structures together with purity of the synthesized compounds were substantiated by IR, (1)H, (13)C, (19)F NMR, high resolution mass spectrometry and elemental analysis. The optical activities were confirmed by optical rotation measurements. The synthesized compounds were evaluated for their AChE and BChE inhibitory activities. In addition, the cytotoxicity of the most active compounds was investigated against human cell lines employing XTT tetrazolium salt reduction assay and xCELLigence system allowing a label-free assessment of the cells proliferation. Our results demonstrated that the inhibitory mechanism was confirmed to be pseudo-irreversible, in line with previous studies on carbamates. Compounds indicated as 3b, 3d, 3l and 3n showed the best AChE inhibitory activity of all the evaluated compounds and were up to tenfold more potent than standard drug rivastigmine. The binding mode was determined using state-of-the-art covalent docking and scoring methodology. The obtained data clearly demonstrated that 3b, 3d, 3l and 3n benzothiazole carbamates possess high inhibitory activity against AChE and BChE and concurrently negligible cytotoxicity. In conclusion, our results indicate, that these derivatives could be promising in an effective therapeutic intervention for Alzheimers disease.


Bioorganic Chemistry | 2015

Salicylanilide diethyl phosphates as cholinesterases inhibitors.

Martin Krátký; Šárka Štěpánková; Katarína Vorčáková; Jarmila Vinšová

Based on the presence of dialkyl phosphate moiety, we evaluated twenty-seven salicylanilide diethyl phosphates (diethyl [2-(phenylcarbamoyl)phenyl] phosphates) for the inhibition of acetylcholinesterase (AChE) from electric eel (Electrophorus electricus L.) and butyrylcholinesterase (BChE) from equine serum. Ellmans spectrophotometric method was used. The inhibitory activity (expressed as IC50 values) was compared with that of the established drugs galantamine and rivastigmine. Salicylanilide diethyl phosphates showed significant activity against both cholinesterases with IC50 values from 0.903 to 86.3 μM. IC50s for BChE were comparatively lower than those obtained for AChE. All of the investigated compounds showed higher inhibition of AChE than rivastigmine, and six of them inhibited BChE more effectively than both rivastigmine and galantamine. In general, derivatives of 4-chlorosalicylic acid showed enhanced activity when compared to derivatives of 5-halogenated salicylic acids, especially against BChE. The most effective inhibitor of AChE was O-{5-chloro-2-[(3-bromophenyl)carbamoyl]phenyl} O,O-diethyl phosphate with IC50 of 35.4 μM, which is also one of the most potent inhibitors of BChE. O-{5-Chloro-2-[(3,4-dichlorophenyl)carbamoyl]phenyl} O,O-diethyl phosphate exhibited in vitro the strongest inhibition of BChE (0.90 μM). Salicylanilide diethyl phosphates act as pseudo-irreversible cholinesterases inhibitors.


Journal of Natural Products | 2015

In Vitro Inhibitory Effects of 8-O-Demethylmaritidine and Undulatine on Acetylcholinesterase and Their Predicted Penetration across the Blood-Brain Barrier.

Lucie Cahlíková; Daniel I. Perez; Šárka Štěpánková; Jakub Chlebek; Marcela Šafratová; Anna Hošt’álková; Lubomír Opletal

Alzheimers disease is the most common cause of dementia. Currently, acetylcholinesterase (AChE) inhibition is the most widely used therapeutic treatment. A large number of naturally occurring compounds have been found to inhibit AChE. In this report the mechanism of AChE inhibition of two Amaryllidaceae alkaloids, 8-O-demethylmaritidine (1) and undulatine (2), and their possible penetration across the blood-brain barrier have been studied. Both compounds act via a mixed inhibition mechanism. Based on the parallel artificial permeation assay (PAMPA) for the prediction of blood-brain barrier (BBB) penetration, only 2 should be able to cross the BBB by passive permeation.


Zeitschrift für Naturforschung C | 2006

Kinetics of Total Enzymatic Hydrolysis of Acetylcholine and Acetylthiocholine

Pavla Zdražilová; Šárka Štěpánková; Martina Vránová; Karel Komers; Alena Komersová; Alexander Cegan

Kinetics and the mechanism of total in vitro hydrolyses (i.e. up to the exhaustion of substrate) of acetylcholine and acetylthiocholine by acetylcholinesterase and butyrylcholinesterase were studied in vitro in a batch reactor at 25 °C, pH 8 and ionic strength of 0.11 ᴍ. Every hydrolysis was monitored by 2 - 3 independent analytical methods. All studied types of enzymatic hydrolyses fulfilled the Michaelis - Menten reaction scheme with the irreversible second step. A table of obtained average values of rate constants and estimations of initial molar enzyme concentrations, and discussion of the results are presented.


Molecules | 2014

Diethyl 2-(Phenylcarbamoyl)phenyl Phosphorothioates: Synthesis, Antimycobacterial Activity and Cholinesterase Inhibition

Jarmila Vinšová; Martin Krátký; Marketa Komloova; Echchukattula Dadapeer; Šárka Štěpánková; Katarína Vorčáková; Jiřina Stolaříková

A new series of 27 diethyl 2-(phenylcarbamoyl)phenyl phosphorothioates (thiophosphates) was synthesized, characterized by NMR, IR and CHN analyses and evaluated against Mycobacterium tuberculosis H37Rv, Mycobacterium avium and two strains of Mycobacterium kansasii. The best activity against M. tuberculosis was found for O-{4-bromo-2-[(3,4-dichlorophenyl)carbamoyl]phenyl} O,O-diethyl phosphorothioate (minimum inhibitory concentration of 4 µM). The highest activity against nontuberculous mycobacteria was exhibited by O-(5-chloro-2-{[4-(trifluoromethyl)phenyl]carbamoyl}-phenyl) O,O-diethyl phosphorothioate with MIC values from 16 µM. Prepared thiophosphates were also evaluated against acetylcholinesterase from electric eel and butyrylcholinesterase from equine serum. Their inhibitory activity was compared to that of the known cholinesterases inhibitors galanthamine and rivastigmine. All tested compounds showed a higher (for AChE inhibition) and comparable (for BChE inhibition) activity to that of rivastigmine, with IC50s within the 8.04 to 20.2 µM range.


RSC Advances | 2016

Isolation of Amaryllidaceae alkaloids from Nerine bowdenii W. Watson and their biological activities

Nina Vaněčková; Anna Hošt’álková; Marcela Šafratová; Jiří Kuneš; Daniela Hulcová; Martina Hrabinova; Ivo Doskocil; Šárka Štěpánková; Lubomír Opletal; Lucie Nováková; Daniel Jun; Jakub Chlebek; Lucie Cahlíková

Twenty-two isoquinoline alkaloids (1–22) were isolated from fresh bulbs of Nerine bowdenii (Amaryllidaceae) by standard chromatographic methods. The chemical structures were elucidated by MS, and 1D and 2D NMR spectroscopic analyses, and by comparison with literature data. 6-O-Demethylbelladine (11) and 4′-O-demethylbelladine (12) are reported here for the first time. Compounds isolated in sufficient amounts were evaluated for their acetylcholinesterase, and butyrylcholinesterase inhibition activity using Ellmans method. In the prolyl oligopeptidase assay, Z-Gly-Pro-p-nitroanilide was used as substrate. Untested alkaloids were also screened for their cytotoxic activity against p53-mutated Caco-2 and HT-29 colorectal adenocarcinoma cells. At the same time, healthy small intestine cells FH-74 Int were used to determine overall toxicity against noncancerous cells. The crinine-type alkaloid buphanisine (7) demonstrated interesting cytotoxicity against both tested cancer cell lines with IC50 values of 8.59 ± 0.15 μM for Caco-2 and 5.32 ± 1.70 μM for HT-29.


Journal of Enzyme Inhibition and Medicinal Chemistry | 2016

Cholinesterase-based biosensors

Šárka Štěpánková; Katarína Vorčáková

Abstract Recently, cholinesterase-based biosensors are widely used for assaying anticholinergic compounds. Primarily biosensors based on enzyme inhibition are useful analytical tools for fast screening of inhibitors, such as organophosphates and carbamates. The present review is aimed at compilation of the most important facts about cholinesterase based biosensors, types of physico-chemical transduction, immobilization strategies and practical applications.


Journal of Enzyme Inhibition and Medicinal Chemistry | 2016

Synthesis, characterization and in vitro evaluation of substituted N-(2-phenylcyclopropyl)carbamates as acetyl- and butyrylcholinesterase inhibitors.

Eva Horáková; Pavel Drabina; Břetislav Brož; Šárka Štěpánková; Katarína Vorčáková; Karel Královec; Radim Havelek; Miloš Sedlák

Abstract A serie of O-substituted N-2-phenylcyclopropylcarbamates was prepared and characterized. These carbamates were tested as inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). It was found, that these compounds exhibit moderate inhibition activity with values of IC50 in the range of 54.8–94.4 μM (for AChE) and up to 5.8 μM (for BChE). The AChE/BChE selectivity for each carbamate was calculated. These values varied from 0.50 to 9.46, two carbamate derivatives inhibited only AChE selectively. The most promising derivative was prepared in all optically pure forms (four isomers). It was found that individual stereoisomers differed only slightly in the inhibition ability. The cytotoxicity of all carbamates was evaluated using the standard in vitro test with Jurkat cells. With regard to their inhibition activity and cytotoxicity as well as easy preparation, O-substituted N-2-phenylcyclopropylcarbamates can be considered as promising compounds for potential medicinal applications.


Bioorganic Chemistry | 2016

Synthesis and in vitro evaluation of novel rhodanine derivatives as potential cholinesterase inhibitors

Martin Krátký; Šárka Štěpánková; Katarína Vorčáková; Jarmila Vinšová

Based on a broad spectrum of biological activities of rhodanines, we synthesized aromatic amides and esters of 2-(4-oxo-2-thioxothiazolidin-3-yl)acetic acid (rhodanine-3-acetic acid) via carbodiimide- or PCl3-mediated coupling. Both esters and amides were investigated for their in vitro inhibitory potency and selectivity against acetylcholinesterase (AChE) from electric eel and butyrylcholinesterase (BChE) from equine serum using Ellmans spectrophotometric method. The derivatives exhibited mostly a moderate activity against both cholinesterases. IC50 values for AChE were in a closer concentration range of 24.05-86.85μM when compared to BChE inhibition (7.92-227.19μM). The esters caused the more efficient inhibition of AChE than amides and parent acid. The esterification and amidation of the rhodanine-3-acetic acid increased inhibition of BChE, even up to 26 times. Derivatives of 4-nitroaniline/phenol showed the activity superior to other substituents (H, Cl, CH3, OCH3, CF3). Rhodanines produced a balanced inhibition of both cholinesterases. Seven derivatives produced the more potent inhibition of AChE than rivastigmine, a clinically used drug; additional three compounds were comparable. Two amides exceeded inhibitory potency of rivastigmine towards BChE. Importantly, this is the first evidence that rhodanine-based compounds are able to inhibit BChE.

Collaboration


Dive into the Šárka Štěpánková's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jarmila Vinšová

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar

Martin Krátký

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karel Komers

University of Pardubice

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge