Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Saroj Nepal is active.

Publication


Featured researches published by Saroj Nepal.


Biochimica et Biophysica Acta | 2013

Activation of autophagy by globular adiponectin attenuates ethanol-induced apoptosis in HepG2 cells: involvement of AMPK/FoxO3A axis.

Saroj Nepal; Pil-Hoon Park

Hepatocellular apoptosis is an important pathological entity of alcoholic liver disease. Previously, we have shown that globular adiponectin (gAcrp) protects liver cells from ethanol-induced apoptosis by modulating an array of signaling pathways. In the present study, we investigated the role of autophagy induction by gAcrp in the suppression of ethanol-induced apoptosis and its potential mechanism(s) in liver cells. Here, we demonstrated that gAcrp significantly restores ethanol-induced suppression of autophagy-related genes, including Beclin-1 and microtubule-associated protein light chain (LC3B) both in primary rat hepatocytes and human hepatoma cell line (HepG2). Globular adiponectin also restored autophagosome formation suppressed by ethanol treatment in HepG2. Furthermore, inhibition of gAcrp-induced autophagic process by knock-down of LC3B prevented protection from ethanol-induced apoptosis. In particular, the autophagic process induced by gAcrp was involved in the suppression of ethanol-induced activation of caspase-8 and expression of Bax. Moreover, knock-down of AMPK by small interfering RNA (siRNA) blocked gAcrp-induced expression of genes related to autophagy, which in turn prevented protection from ethanol-induced apoptosis, suggesting that AMPK plays an important role in the induction of autophagy and protection of liver cells by gAcrp. Finally, we also showed that gAcrp treatment induces translocation of the forkhead box O member protein, FoxO3A, into the nucleus, which may play a role in the induction of autophagy-related genes. Taken together, our data demonstrated that gAcrp protects liver cells from ethanol-induced apoptosis via induction of autophagy. Further, the AMPK-FoxO3A axis plays a cardinal role in gAcrp-induced autophagy and subsequent inhibition of ethanol-induced apoptosis.


Biochemical Pharmacology | 2012

Globular adiponectin inhibits ethanol-induced apoptosis in HepG2 cells through heme oxygenase-1 induction.

Saroj Nepal; Mi Jin Kim; Amit Subedi; Eung-Seok Lee; Chul Soon Yong; Jung-Ae Kim; Wonku Kang; Mi-Kyung Kwak; Dharamvir Singh Arya; Pil-Hoon Park

Hepatocellular apoptosis is an essential pathological feature of alcoholic liver disease. Adiponectin, an adipokine predominantly secreted from adipose tissue, has been shown to play beneficial roles in alcoholic liver disease against various inflammatory and pro-apoptotic molecules. However, the effects of adiponectin on ethanol-induced apoptosis in liver cells are largely unknown. Herein, we investigated the role of globular adiponectin (gAcrp) in the prevention of ethanol-induced apoptosis and further tried to decipher the potential mechanisms involved. In the present study, we demonstrated that gAcrp significantly inhibits both ethanol-induced increase in Fas ligand expression and activation of caspase-3 in human hepatoma cell lines (HepG2 cells), suggesting that gAcrp plays a protective role against ethanol-induced apoptosis in liver cells. This protective effect of gAcrp was mediated through adiponectin receptor R1 (adipoR1). Further, globular adiponectin treatment caused induction of heme oxygenase-1 (HO-1) through, at least in part, nuclear factor (erythroid-derived 2)-like 2, (Nrf2) signaling. Treatment with SnPP, a pharmacological inhibitor of HO-1, and knockdown of HO-1 with small interfering RNA (siRNA) restored caspase-3 activity suppressed by gAcrp, indicating a critical role of HO-1 in mediating the protective role of gAcrp in ethanol-induced apoptosis in liver cells. In addition, carbon monoxide, a byproduct obtained from the catabolism of free heme was found to contribute to the anti-apoptotic effect of adiponectin. In conclusion, these data demonstrated that globular adiponectin prevents ethanol-induced apoptosis in HepG2 cells via HO-1 induction and revealed a novel biological response of globular adiponectin in the protection of liver injury from alcohol consumption.


Phytotherapy Research | 2011

Upregulation of PPARγ by Aegle marmelos ameliorates insulin resistance and β-cell dysfunction in high fat diet fed-streptozotocin induced type 2 diabetic rats.

Ashok Sharma; Saurabh Bharti; Sameer N. Goyal; Sachin Arora; Saroj Nepal; Kamal Kishore; Sujata Joshi; Santosh Kumari; Dharamvir Singh Arya

The global epidemic of type 2 diabetes demands the rapid evaluation of new and accessible interventions. This study investigated whether Aegle marmelos fruit aqueous extract (AMF; 250, 500 and 1000 mg/kg) improves insulin resistance, dyslipidemia and β‐cell dysfunction in high fat diet fed‐streptozotocin (HFD‐STZ)‐induced diabetic rats by modulating peroxisome proliferator‐activated receptor‐γ (PPARγ) expression. The serum levels of glucose, insulin, homeostasis model assessment of insulin resistance (HOMA‐IR), homeostasis model assessment of β‐cell function (HOMA‐B), lipid profile, TNF‐α and IL‐6 were evaluated. Further, the TBARS level and SOD activity in pancreatic tissue and PPARγ protein expression in liver were assessed. In addition, histopathological and ultrastructural studies were performed to validate the effect of AMF on β‐cells. The HFD‐STZ treated rats showed a significant increase in the serum levels of glucose, insulin, HOMA‐IR, TNF‐α, IL‐6, dyslipidemia with a concomitant decrease in HOMA‐B and PPARγ expression. Treatment with AMF for 21 days in diabetic rats positively modulated the altered parameters in a dose‐dependent manner. Furthermore, AMF prevented inflammatory changes and β‐cell damage along with a reduction in mitochondrial and endoplasmic reticulum swelling. These findings suggest that the protective effect of AMF in type 2 diabetic rats is due to the preservation of β‐cell function and insulin‐sensitivity through increased PPARγ expression. Copyright


Journal of Cellular Physiology | 2016

Critical Role of AMPK/FoxO3A Axis in Globular Adiponectin‐Induced Cell Cycle Arrest and Apoptosis in Cancer Cells

Anup Shrestha; Saroj Nepal; Mi Jin Kim; Jae Hoon Chang; Sang-Hyun Kim; Gil-Saeng Jeong; Chul-Ho Jeong; Gyu Hwan Park; Sung-Hee Jung; Jaecheong Lim; Eun-Ha Cho; Soyoung Lee; Pil-Hoon Park

Adiponectin predominantly secreted from adipose tissue has exhibited potent anti‐proliferative properties in cancer cells via modulating cell cycle and apoptosis. FoxO3A, a Forkhead box O member of the transcription factor, plays a critical role in modulating expression of genes involved in cell death and/or survival. In this study, we investigated the role of FoxO3A signaling in anti‐cancer activities of adiponectin. Herein, we have shown that treatment with globular adiponectin (gAcrp) increases p27 but decreases cyclinD1 expression in human hepatoma (HepG2) and breast (MCF‐7) cancer cells. Gene ablation of FoxO3A prevented gAcrp‐induced increase in p27 and decreased in cyclin D1 expression, and further ameliorated cell cycle arrest by gAcrp, indicating a critical role of FoxO3A in gAcrp‐induced cell cycle arrest of cancer cells. Moreover, treatment with gAcrp also induced caspase‐3/7 activation and increased Fas ligand (FasL) expression in both HepG2 and MCF‐7 cells. Transfection with FoxO3A siRNA inhibited gAcrp‐induced caspase‐3/7 activation and FasL expression, suggesting that FoxO3A signaling also plays an important role in gAcrp‐induced apoptosis of cancer cells. We also found that gene silencing of AMPK prevented gAcrp‐induced nuclear translocation of FoxO3A in HepG2 and MCF‐7 cells. In addition, suppression of AMPK also blocked gAcrp‐induced cell cycle arrest and further attenuated gAcrp‐induced caspase‐3/7 activation, indicating that AMPK signaling plays a pivotal role in both gAcrp‐induced cell cycle arrest and apoptosis via acting as an upstream signaling of FoxO3A. Taken together, our findings demonstrated that AMPK/FoxO3A axis plays a cardinal role in anti‐proliferative effect of adiponectin in cancer cells. J. Cell. Physiol. 231: 357–369, 2016.


Experimental and Toxicologic Pathology | 2012

Abresham ameliorates dyslipidemia, hepatic steatosis and hypertension in high-fat diet fed rats by repressing oxidative stress, TNF-α and normalizing NO production

Saroj Nepal; Salma Malik; Ashok Sharma; Saurabh Bharti; Narender Kumar; Khalid Mehmood Siddiqui; Jagriti Bhatia; Santosh Kumari; Dharamvir Singh Arya

This study was aimed to investigate whether standardized hydroalcoholic extract of abresham (AB) ameliorates dyslipidemia, hepatic steatosis and associated hypertension in rats fed with high-cholesterol/high-fat diet (HFD). HFD (55% calorie from fat and 2% cholesterol) were fed for 45 days to induce dyslipidemia, hepatic steatosis and associated hypertension. After confirmation of hypercholesterolemia (total cholesterol >150 mg/dl) on 30th day, different doses of AB (200-800 mg/kg/day) were administered for next 15 days. HFD administration for 45 days led to cardiometabolic syndrome characterized by significant increase in body weight, total cholesterol, triglyceride, low density lipoprotein cholesterol, TNF-α levels along with decrease in high density lipoprotein cholesterol and serum NO level. Furthermore, HFD resulted in significant increase in systolic arterial pressure, diastolic arterial pressure and mean arterial pressure. In addition, morphological studies revealed hepatic steatosis along with swelling of mitochondria and loss of cristae in hepatocyte and periarteritis in aorta. Treatment with AB for 15 days positively modulated the altered parameters in dose-dependent fashion, though maximum effect was seen at 800 mg/kg. These findings suggest that AB guard against cardiometabolic syndrome in HFD fed rats. It attenuates dyslipidemia, hepatic steatosis and associated hypertension by decreasing oxidative stress, TNF-α and normalizing NO production.


Journal of Nutritional Biochemistry | 2012

Sesamol alleviates diet-induced cardiometabolic syndrome in rats via up-regulating PPARγ, PPARα and e-NOS

Ashok Sharma; Saurabh Bharti; Jagriti Bhatia; Saroj Nepal; Salma Malik; Ruma Ray; Santosh Kumari; Dharamvir Singh Arya

Increased oxidative stress and inflammation in obesity are the central and causal components in the pathogenesis and progression of cardiometabolic syndrome (CMetS). The aim of the study was to determine the potential role of sesamol (a natural powerful antioxidant and anti-inflammatory phenol derivative of sesame oil) in chronic high-cholesterol/high-fat diet (HFD)-induced CMetS in rats and to explore the molecular mechanism driving this activity. Rats were fed with HFD (55% calorie from fat and 2% cholesterol) for 60 days to induce obesity, dyslipidemia, insulin resistance (IR), hepatic steatosis and hypertension. On the 30th day, rats with total cholesterol >150 mg/dl were considered hypercholesterolemic and administered sesamol 2, 4 and 8 mg/kg per day for the next 30 days. Sesamol treatment decreased IR, hyperinsulinemia, hyperglycemia, dyslipidemia, TNF-α, IL-6, leptin, resistin, highly sensitive C-reactive protein (hs-CRP), hepatic transaminases and alkaline phosphatase, along with normalization of adiponectin, nitric oxide and arterial pressures in a dose-dependent fashion. Increased TBARS, nitrotyrosine and decreased antioxidant enzyme activities were also amended in HFD rats. Similarly, sesamol normalized hepatic steatosis and ultrastructural pathological alteration in hepatocytes, although the effect was more pronounced at 8 mg/kg. Furthermore, hepatic PPARγ, PPARα and e-NOS protein expressions were increased, whereas LXRα, SERBP-1c, P-JNK and NF-κB expression were decreased by sesamol treatment. These results suggest that sesamol attenuates oxidative stress, inflammation, IR, hepatic steatosis and hypertension in HFD-fed rats via modulating PPARγ, NF-κB, P-JNK, PPARα, LXRα, SREBP-1c and e-NOS protein expressions, thereby preventing CMetS. Thus, the present study demonstrates the therapeutic potential of sesamol in alleviating CMetS.


Journal of Cardiovascular Pharmacology | 2011

In vivo cardioprotection by pitavastatin from ischemic-reperfusion injury through suppression of IKK/NF-κB and upregulation of pAkt-e-NOS.

Salma Malik; Ashok Sharma; Saurabh Bharti; Saroj Nepal; Jagriti Bhatia; Tapas Chandra Nag; Rajiv Narang; Dharamvir Singh Arya

Recent studies have uncovered the beneficial effects of statin in cardiovascular diseases; however, the role of pitavastatin in ischemia-reperfusion (IR)-induced apoptosis and myocardial damage is not established. Therefore, in this study, we aim to investigate whether pitavastatin treatment attenuates myocardial IR injury via regulating oxidative stress, inflammation, apoptosis, and phosphorylated protein kinase B (pAkt) endothelial nitric oxide synthase (e-NOS) pathways. After the 14-day treatment with pitavastatin (0.16-0.64 mg·kg−1·d−1, po) or saline, rats were subjected to 45 minutes of ischemia by occluding the left anterior descending coronary artery and to 60 minutes of reperfusion to induce myocardial damage. Pitavastatin at a dose of 0.32 and 0.64 mg/kg significantly improved cardiac function as evidenced by the normalization of the mean arterial pressure, heart rate, ±LVdP/dtmax, and left ventricular end-diastolic pressure as compared with the IR control. Additionally, pitavastatin dose-dependently normalized myocardial antioxidants, lactate dehydrogenase, and thiobarbituric acid reactive substances along with decreased serum tumor necrosis factor-α level and creatine kinase isoenzyme-MB activity. Furthermore, pitavastatin enhanced pAkt, (p) e-NOS, Bcl-2, and suppressed IκB kinase/nuclear factor-kappa B, nitrotyrosine (NO inactivation product), Bax, and capases-3 protein expression in the heart. Morphological assessments of the IR-challenged myocardium showed that 0.32 and 0.64 mg/kg of pitavastatin decrease myocardial necrosis and inflammatory changes. Thus, pitavastatin reduced IR-induced infarction and dysfunction via the augmentation of endogenous antioxidant, suppression of IκB kinase/nuclear factor-kappa B, activation of pAkt-e-NOS, and/or decreased NO inactivation and apoptosis.


Food and Chemical Toxicology | 2014

Modulation of Atg5 expression by globular adiponectin contributes to autophagy flux and suppression of ethanol-induced cell death in liver cells

Saroj Nepal; Mi Jin Kim; Eung-Seok Lee; Jung-Ae Kim; Dong-Young Choi; Dong-Hwan Sohn; Sung-Hee Lee; Kyung Seuk Song; Sang-Hyun Kim; Gil-Saeng Jeong; Tae Cheon Jeong; Pil-Hoon Park

Globular adiponectin (gAcrp) protects liver cells from ethanol-induced apoptosis via induction of autophagy. However, the underlying mechanisms are unknown. The present study aims to investigate the potential role of autophagy-related protein 5 (Atg5), an essential Atg for the elongation of autophagosomes, in suppression of ethanol-induced cytotoxicity by gAcrp. Here, we demonstrated that suppression of Atg5 expression by ethanol was restored by pretreatment with gAcrp both in primary rat hepatocytes and human hepatoma cell line (HepG2). Moreover, ethanol-induced accumulation of p62 (sequestosome1), a marker of autophagic flux, was restored by gAcrp treatment, implying that gAcrp modulates autophagic flux in liver cells. Further, Atg5 silencing prevented p62 degradation by gAcrp, suggesting that Atg5 plays a critical role in induction of autophagic flux by gAcrp. Interestingly, gene silencing of Atg5 by siRNA abrogated restoration of autophagosome formation by gAcrp in ethanol-treated cells. Finally, protection of liver cells by gAcrp from ethanol-induced apoptosis was also significantly attenuated by knocking-down of Atg5 expression, suggesting an important role of Atg5 in autophagy induction and cellular apoptosis modulated by gAcrp. Taken together, our data demonstrated that Atg5 expression, at least in part, is implicated in gAcrp-induced autophagy and subsequent anti-apoptotic effects in ethanol-treated liver cells.


Toxicology and Applied Pharmacology | 2013

Ethanol increases matrix metalloproteinase-12 expression via NADPH oxidase-dependent ROS production in macrophages

Mi Jin Kim; Saroj Nepal; Eung-Seok Lee; Tae Cheon Jeong; Sang-Hyun Kim; Pil-Hoon Park

Matrix metalloproteinase-12 (MMP-12), an enzyme responsible for degradation of extracellular matrix, plays an important role in the progression of various diseases, including inflammation and fibrosis. Although most of those are pathogenic conditions induced by ethanol ingestion, the effect of ethanol on MMP-12 has not been explored. In the present study, we investigated the effect of ethanol on MMP-12 expression and its potential mechanisms in macrophages. Here, we demonstrated that ethanol treatment increased MMP-12 expression in primary murine peritoneal macrophages and RAW 264.7 macrophages at both mRNA and protein levels. Ethanol treatment also significantly increased the activity of nicotinamide adenine dinucleotide (NADPH) oxidase and the expression of NADPH oxidase-2 (Nox2). Pretreatment with an anti-oxidant (N-acetyl cysteine) or a selective inhibitor of NADPH oxidase (diphenyleneiodonium chloride (DPI)) prevented ethanol-induced MMP-12 expression. Furthermore, knockdown of Nox2 by small interfering RNA (siRNA) prevented ethanol-induced ROS production and MMP-12 expression in RAW 264.7 macrophages, indicating a critical role for Nox2 in ethanol-induced intracellular ROS production and MMP-12 expression in macrophages. We also showed that ethanol-induced Nox2 expression was suppressed by transient transfection with dominant negative IκB-α plasmid or pretreatment with Bay 11-7082, a selective inhibitor of NF-κB, in RAW 264.7 macrophages. In addition, ethanol-induced Nox2 expression was also attenuated by treatment with a selective inhibitor of p38 MAPK, suggesting involvement of p38 MAPK/NF-κB pathway in ethanol-induced Nox2 expression. Taken together, these results demonstrate that ethanol treatment elicited increase in MMP-12 expression via increase in ROS production derived from Nox2 in macrophages.


FEBS Letters | 2013

Globular adiponectin modulates expression of programmed cell death 4 and miR-21 in RAW 264.7 macrophages through the MAPK/NF-κB pathway.

Amit Subedi; Mi Jin Kim; Saroj Nepal; Eung-Seok Lee; Jung-Ae Kim; Dong-Hwan Sohn; Kyung Seuk Song; Sung Hee Lee; Won Sang Park; Byeong-Seon Jeong; Pil-Hoon Park

MicroRNA‐21 and programmed cell death 4 (PDCD4), a downstream target of miR‐21, mediate diverse physiological responses. Here we demonstrate that globular adiponectin (gAcrp) modulates expression of miR‐21 and PDCD4 in RAW 264.7 macrophages. These effects were abrogated by inhibitors of ERK1/2, JNK or NF‐κB. Conditioned media collected from gAcrp‐stimulated RAW 264.7 macrophages caused similar effects as direct gAcrp treatment, showing the paracrine effect of gAcrp. These data indicate that gAcrp modulates the miR‐21/PDCD4 axis through the ERK and JNK/NF‐κB pathways in RAW 264.7 macrophages and further suggest that the miR‐21/PDCD4 axis may be a novel target mediating adiponectin‐induced biological responses.

Collaboration


Dive into the Saroj Nepal's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dharamvir Singh Arya

All India Institute of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sang-Hyun Kim

Kyungpook National University

View shared research outputs
Top Co-Authors

Avatar

Ashok Sharma

All India Institute of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Salma Malik

All India Institute of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Santosh Kumari

Indian Agricultural Research Institute

View shared research outputs
Top Co-Authors

Avatar

Saurabh Bharti

All India Institute of Medical Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge