Sarwat Iqbal
Cardiff University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sarwat Iqbal.
Catalysis Science & Technology | 2016
Obaid F. Aldosari; Sarwat Iqbal; Peter John Miedziak; Daniel R. Jones; Xi Liu; Jennifer K. Edwards; David John Morgan; David W. Knight; Graham J. Hutchings
The selective hydrogenation of furfural at ambient temperature has been investigated using a Pd/TiO2 catalyst. The effect of the solvent was studied and high activity and selectivity to 2-methylfuran and furfuryl alcohol was observed using octane as solvent but a number of byproducts were observed. The addition of Ru to the PdTiO2 catalyst decreased the catalytic activity but improved the selectivity towards 2-methylfuran and furfuryl alcohol with decreased byproduct formation. Variation of the Ru/Pd ratio has shown an interesting effect on the selectivity. The addition of a small amount of Ru (1 wt%) shifted the selectivity towards furfuryl alcohol and 2-methylrofuran. Further increasing the Ru ratio decreased the catalytic activity and also showed a very poor selectivity to 2-methylfuran.
Catalysis Science & Technology | 2016
Yeuling Cao; Xi Liu; Sarwat Iqbal; Peter John Miedziak; Jennifer K. Edwards; Robert Armstrong; David John Morgan; Junwei Wang; Graham J. Hutchings
1% Au/TiO2 catalysts prepared by a range of preparation methods were studied for the base-free oxidation of glucose. The highest catalytic activity was observed with the catalyst prepared by the sol-immobilization method. Furthermore we have studied the effect of the post-synthesis treatments of treatment with water, or heating in air on the activity. The catalyst calcined at 250 °C showed optimal activity and selectivity. Additionally, we studied the effect of the amount of stabilising ligand in the sol-immobilisation method and observed that this is a key parameter with respect to determining the catalysts activity.
Green Chemistry | 2017
Satoshi Ishikawa; Daniel R. Jones; Sarwat Iqbal; Christian Reece; David John Morgan; David J. Willock; Peter John Miedziak; Jonathan Keith Bartley; Jennifer K. Edwards; Toru Murayama; Wataru Ueda; Graham J. Hutchings
Cu–ZrO2 catalysts were synthesized by the methanothermal (Me) and oxalate gel precipitation (Og) methods. Detailed characterization of the catalysts synthesized by the Me method shows that these contain only Cu substituted into the tetragonal ZrO2 lattice. For catalysts prepared using the Og method Cu is found not only in the tetragonal ZrO2 lattice but also in the form of CuO particles on the zirconia surface. When these materials were tested for the hydrogenation of levulinic acid (LA) to γ-valerolactone (GVL) it was found that Me materials show no catalytic activity, whereas GVL was formed using Og catalysts. A reduction treatment of the Og catalysts prior to use resulted in a marked increase in the catalytic activity, however, no activity increase was observed when the Me material was exposed to a similar treatment before testing. Based on these results and characterization data, we conclude that the catalytically active component of Cu–ZrO2 catalysts for the hydrogenation of LA is reduced Cu particles dispersed on the catalyst surface with strong interaction with the Cu incorporated zirconia support, while the role of Cu in the zirconia lattice is to improve the adhesion of these particles and maintain their dispersion.
Catalysis Science & Technology | 2016
Daniel R. Jones; Sarwat Iqbal; Satoshi Ishikawa; Christian Reece; Liam Thomas; Peter John Miedziak; David John Morgan; Jennifer K. Edwards; Jonathon K. Bartley; David J. Willock; Graham J. Hutchings
A series of Cu–ZrO2 catalysts prepared by a co-precipitation method were studied for the hydrogenation of levulinic acid to give γ-valerolactone (GVL). The effects of a range of catalyst preparation parameters, namely molar Cu/Zr ratio, calcination temperature and the ageing time of the precipitates, were systematically investigated. The molar Cu/Zr ratio was found to have a strong influence on the BET surface area of the material leading to a high activity for catalysts prepared with a Cu/Zr molar ratio of unity. Using this molar ratio the calcination temperature was varied from 300 °C to 800 °C, the material calcined at 400 °C showed the highest activity. Increasing the ageing time used in the catalyst preparation identified 6 h as the optimum to achieve the highest activity for LA conversion. Based on characterisation of all materials we conclude that the active Cu species is present in only low concentration suggesting that it should be possible to produce a catalyst of high activity with much lower Cu content.
Chemcatchem | 2015
Gavin Morgan King; Sarwat Iqbal; Peter John Miedziak; Simon A. Kondrat; Benjamin Roy Yeo; Xi Liu; Jennifer K. Edwards; David John Morgan; David K. Knight; Graham J. Hutchings
The selective hydrogenation of furfuryl alcohol was investigated at room temperature by using supported palladium catalysts. The catalysts are very selective to the formation of 2‐methylfuran. Furthermore, the addition of tin to palladium showed similar catalytic activity, but was more selective to tetrahydrofurfuryl alcohol. Variation of the Sn/Pd ratio has shown a considerable and interesting effect on the selectivity pattern. Addition of a small amount of Sn (1 wt %) shifted the selectivity towards tetrahydrofurfuryl alcohol and methyltetrahydrofuran, which are ring‐saturated molecules. Increasing the tin ratio further decreased the catalytic activity and also showed very poor selectivity to either of these products.
Catalysis Science & Technology | 2017
Moataz Morad; Ewa Nowicka; Mark Douthwaite; Sarwat Iqbal; Peter John Miedziak; Jennifer K. Edwards; Qian He; David John Morgan; Hamed Alshammari; Donald Bethell; David W. Knight; Meenakshisundaram Sankar; Graham J. Hutchings
We report the one-pot tandem synthesis of 4-(4-methoxyphenyl)butan-2-one directly from 4-methoxybenzyl alcohol and acetone using a multifunctional supported AuPd nanoalloy catalyst. This one-pot synthesis involves dehydrogenation, aldol condensation and hydrogenation of CC. In this supported AuPd catalyst, the bimetallic sites catalyse the dehydrogenation and hydrogenation steps and, in combination with the support, catalyse the C–C coupling (aldol) process. This supported bimetallic catalyst is also effective in utilizing hydrogen from the dehydrogenation reaction for the hydrogenation of 4-(4-methoxyphenyl)but-3-en-2-one to 4-(4-methoxyphenyl)butane-2-one via a hydrogen auto transfer route. These multifunctional catalysts were characterised using transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy.
Catalysis Science & Technology | 2017
Mark Douthwaite; Xiaoyang Huang; Sarwat Iqbal; Peter John Miedziak; Simon A. Kondrat; Jennifer K. Edwards; Meenakshisundaram Sankar; David W. Knight; Donald Bethell; Graham J. Hutchings
The emphasis of modern chemistry is to satisfy the needs of consumers by using methods that are sustainable and economical. Using a 1% AuPd/Mg(OH)2 catalyst in the presence of NaOH and under specific reaction conditions furfural; a platform chemical formed from lignocellulosic biomass, can be selectively oxidised to furoic acid, and the catalyst displays promising reusability for this reaction. The mechanism of this conversion is complex with multiple competing pathways possible. The experimental conditions and AuPd metal ratio can be fine-tuned to provide enhanced control of the reaction selectivity. Activation energies were derived for the homogeneous Cannizzaro pathway and the catalytic oxidation of furfural using the initial rates methodology. This work highlights the potential of using a heterogeneous catalyst for the oxidation of furfural to furoic acid that has potential for commercial application.
Sustainable Energy and Fuels | 2017
Mzamo Shozi; Venkata D.B.C. Dasireddy; Sooboo Singh; Pheladi Mohlala; David John Morgan; Sarwat Iqbal; Holger B. Friedrich
Cu and Re monometallic and bimetallic catalysts supported on ZnO were synthesized via wet impregnation. The catalysts were characterized using XRD, TPR, Pulse TPD, TEM, SEM, XPS and BET surface area. TPR results showed that the presence of rhenium increases the reduction temperature of the catalysts and TPD showed that the presence of copper decreases the Bronsted acidity of the catalysts. SEM showed an improved distribution of metal oxide on the support after the incorporation of rhenium. These catalysts were evaluated in the hydrogenolysis of glycerol in a continuous flow fixed bed reactor in a temperature range of 150–250 °C and a H2 pressure of 60 bar. All catalysts were active, with activity being higher over the rhenium containing catalysts. At the lowest temperature (150 °C), 1,2-propanediol had the highest selectivity which decreased with increase in temperature. Subsequently, the selectivity to lower alcohols, such as methanol, ethanol and 1-propanol, and ethylene glycol increased with temperature as 1,2-propanediol reacted further to these products due to C–C bond cleavage. This was also observed when the hydrogen content was increased at constant temperature (250 °C). All catalysts were found to be stable in terms of activity and selectivity to lower alcohols over a period of at least 24 hours at 250 °C and 60 bar H2 pressure.
Topics in Catalysis | 2018
Daniel R. Jones; Sarwat Iqbal; Peter John Miedziak; David John Morgan; Jennifer K. Edwards; Qian He; Graham J. Hutchings
A 1% Ru/C catalyst prepared by the sol immobilization method showed a high yield of γ-valerolactone from levulinic acid. We performed an optimization of the catalyst by varying the preparation variables involved in the sol immobilization method and detremined that the ratio of PVA, NaBH4 to Ru and heat treatment conditions play a crucial role in the synthesis of active and selective catalysts. By varying these parameters we have identified the optimum conditions for catalyst preparation by providing well dispersed nanoparticles of RuOx on the carbon support that are reducible under low reaction temperature and in turn gave an enhanced catalytic activity. In contrast to a catalyst prepared without using a PVA stabiliser, the use of a small amount PVA (PVA/Ru = 0.1) provided active nanoparticles, by controlling the steric size of the Ru nanoparticles. An optimum amount of NaBH4 was required in order to provide the reducible Ru species on the surface of catalyst and further increase in NaBH4 was found to cause a decline in activity that was related to the kinetics of nanoparticle formation during catalyst preparation. A variation of heat treatment temperature showed a corresponding decrease in catalytic activity linked with the sintering and an increase in particle size.Graphical Abstract
Archive | 2018
Ruiyang Qu; Margherita Macino; Sarwat Iqbal; Xiang Gao; Qian He; Graham J. Hutchings; Meenakshisundaram Sankar
Selective hydrogenation of nitrobenzene was carried out under solvent-free conditions using supported AuPd nanoparticles catalyst, prepared by modified impregnation method (MIm), as efficient catalyst. >99% yield of aniline (AN) was obtained after 15 hours at 90 °C, 3 bar H2 that can be used without any further purification or separation, therefore reducing cost and energy input. Supported AuPd nanoparticles catalyst, prepared by MIm, was found to be active and stable even after 4 recycle experiments whereas the same catalyst prepared by SIm deactivated during the recycle experiments. The most effective catalyst was tested for the chemoselective hydrogenation of 4-chloronitrobenzene (CNB) to 4-chloroaniline (CAN). The activation energy of CNB to CAN was found to be 25 kJ mol -1 , while that of CNB to AN was found to be 31 kJ mol -1 . Based on this, the yield of CAN was maximized (92%) by lowering the reaction temperature to 25 °C.