Saša Kenig
Elettra Sincrotrone Trieste
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Saša Kenig.
Nature Structural & Molecular Biology | 2013
Matteo Berti; Arnab Ray Chaudhuri; Saravanabhavan Thangavel; Shivasankari Gomathinayagam; Saša Kenig; Marko Vujanovic; Federico Odreman; Timo Glatter; Simona Graziano; Ramiro Mendoza-Maldonado; Francesca Marino; Bojana Lucic; Valentina Biasin; Matthias Gstaiger; Ruedi Aebersold; Julia M. Sidorova; Raymond J. Monnat; Massimo Lopes; Alessandro Vindigni
Topoisomerase I (TOP1) inhibitors are an important class of anticancer drugs. The cytotoxicity of TOP1 inhibitors can be modulated by replication fork reversal through a process that requires poly(ADP-ribose) polymerase (PARP) activity. Whether regressed forks can efficiently restart and what factors are required to restart fork progression after fork reversal are still unknown. We have combined biochemical and EM approaches with single-molecule DNA fiber analysis to identify a key role for human RECQ1 helicase in replication fork restart after TOP1 inhibition that is not shared by other human RecQ proteins. We show that the poly(ADP-ribosyl)ation activity of PARP1 stabilizes forks in the regressed state by limiting their restart by RECQ1. These studies provide new mechanistic insights into the roles of RECQ1 and PARP in DNA replication and offer molecular perspectives to potentiate chemotherapeutic regimens based on TOP1 inhibition.
Cancer Letters | 2010
Saša Kenig; María Beatriz Durán Alonso; Margareta M. Mueller; Tamara T. Lah
Malignant glioma is characterized by rapid proliferation, high invasiveness into the surrounding brain and increased vascularity. The aim of the study was to explain the observation that glioblastoma invasion often occurs along existing vasculature, suggesting interactions between the two types of cells. Using the in vitro model, we demonstrate that co-culturing of U87 (human glioblastoma) cells with HMEC-1 (human microvascular endothelial) cells increases the invasiveness of the U87 cells. The enhanced invasiveness correlates with increased expression of MMP-9 in both U87 and HMEC-1 cells, increased expression of cysteine cathepsins B and S and down-regulation of endogenous cell adhesion molecule NCAM in U87 cells. On the other hand, U87 tumour cells significantly enhance the proliferation of co-cultured endothelial cells by a mechanism involving cathepsin B, but not cathepsin S. Furthermore, we demonstrated that increased cell expression and activity of MMP-9 in cell microenvironment is mediated via secretion of SDF-1 by HMEC-1 cells. Selective SDF-1 inhibition impaired the enhanced U87 cell invasion, mostly via down-regulation of MMP-9, but did not alter cathepsin B, although the latter is more relevant for the invasion of U87 cells in mono-culture. Taken together, our study suggests that glioblastoma cells may be attracted by endothelial cells, enhancing their proliferation and underlines the importance of SDF-1, cathepsin B and MMP-9 in the cross-talk between these cells in normoxic conditions. This notion contributes to better understanding and suggests further investigations of the paracrine mechanisms, regulating glioma angiogenesis.
Scientific Reports | 2015
Alessandra Gianoncelli; Lisa Vaccari; George Kourousias; D. Cassese; Diana E. Bedolla; Saša Kenig; Paola Storici; M. Lazzarino; M. Kiskinova
Radiation damage of biological samples remains a limiting factor in high resolution X-ray microscopy (XRM). Several studies have attempted to evaluate the extent and the effects of radiation damage, proposing strategies to minimise or prevent it. The present work aims to assess the impact of soft X-rays on formalin fixed cells on a systematic manner. The novelty of this approach resides on investigating the radiation damage not only with XRM, as often reported in relevant literature on the topic, but by coupling it with two additional independent non-destructive microscopy methods: Atomic Force Microscopy (AFM) and FTIR Microscopy (FTIRM). Human Embryonic Kidney 293 cells were exposed to different radiation doses at 1 keV. In order to reveal possible morphological and biochemical changes, the irradiated cells were systematically analysed with AFM and FTIRM before and after. Results reveal that while cell morphology is not substantially affected, cellular biochemical profile changes significantly and progressively when increasing dose, resulting in a severe breakdown of the covalent bonding network. This information impacts most soft XRM studies on fixed cells and adds an in-depth understanding of the radiation damage for developing better prevention strategies.
Apoptosis | 2011
Saša Kenig; Robert Frangež; Anja Pucer; Tamara T. Lah
Despite all the progress in cancer treatment, glioblastoma, the most malignant tumor of the central nervous system, remains a terminal disease and new therapeutic approaches are urgently needed. A combination of chemotherapy with modifications that lower the apoptotic threshold of cancer cells could be effective. Cathepsin L inhibition was suggested as one of such modifications but the mechanism of cathepsin L anti-apoptotic activity is largely unknown. In the present study we show that, in U87 glioblastoma cells, cathepsin L is present in the nucleus and regulates the transcription of effector caspases 3 and 7. In cells with low cathepsin L expression, p53 and prohibitin—transcription factors that regulate caspase 7 expression—accumulate in the nuclei. The importance of p53 in this process is highlighted by the fact that in U87 cells with inhibited p53 transcriptional activity or in p53-negative cells U251, cathepsin L inhibition did not influence caspase 7 expression and had minimal effect on the level of apoptosis. Since p53 pathways are often mutated in glioblastoma, the findings of our study need to be considered before using cathepsin L inhibition for glioblastoma therapy and suggest that such adjuvant therapy may be effective only for a subpopulation of p53 wild type glioblastoma patients.
Biological Chemistry | 2006
Simon Caserman; Saša Kenig; Bonnie F. Sloane; Tamara T. Lah
Abstract Transcripts of the lysosomal cysteine proteinase cathepsin L are spliced into five variants (L-A, L-A1, LA-2, LA-3 and L-B), which have similar stabilities but different translation efficiencies, thus potentially yielding diverse amounts of the protein. The aim of this study was to investigate whether the abnormally elevated expression of cathepsin L in invasive tumours is due to overexpression of L-A3, the splice variant translated most efficiently. The expression pattern of cathepsin L mRNA variants was measured by quantitative polymerase chain reaction (qPCR) in two panels of cell lines obtained from precancerous and cancerous breast tissue. In both panels, the cell line exhibiting the highest in vitro invasiveness also expressed the highest amount of L-A3. Although the pattern of expression varied, the expression of the L-B variant was always remarkably lower than for other variants. We propose that posttranscriptional regulation of cathepsin L expression is altered during breast tumour progression.
Analytical Chemistry | 2015
Elisa Mitri; Saša Kenig; Giovanna Coceano; Diana E. Bedolla; Massimo Tormen; Gianluca Grenci; Lisa Vaccari
Maintaining the correct folding of cellular proteins is essential for preserving cellular homeostasis. Protein dishomeostasis, aberrant protein folding, and protein aggregation are indeed involved in several diseases including cancer, aging-associated, and neurodegenerative disorders. Accumulation of protein aggregates can also be induced from a variety of stressful conditions, such as temperature increase or oxidative stress. In this work, we monitored by Fourier transform-infrared (FT-IR) microspectroscopy the response of live breast cancer MCF-7 and mammary breast adenocarcinoma MDA-MB 231 cell lines to severe heat-shock (HS), caused by the rise of the cellular medium temperature from 37 ± 0.5 °C to 42 ± 0.5 °C. Through the study of the time-evolution of the second derivatives of the spectra and by the 2D correlation analysis of FT-IR absorbance data, we were able to identify a common sudden heat-shock response (HSR) among the two cell lines. The hyperfluidization of mammalian cell membranes, the transient increment of the signal lipids, as well as the alteration of proteome profile were all monitored within the first 40 min of stress application, while the persistent intracellular accumulation of extended β-folded protein aggregates was detected after 40 min up to 2 h. As a whole, this paper offers a further prove of the diagnostic capabilities of FT-IR microspectroscopy for monitoring in real-time the biochemical rearrangements undergone by live cells upon external stimulation.
Cancer Cell International | 2016
Saša Kenig; Valentina Faoro; Evgenia Bourkoula; Neža Podergajs; Tamara Ius; Marco Vindigni; Miran Skrap; Tamara T. Lah; Daniela Cesselli; Paola Storici; Alessandro Vindigni
BackgroundGlioblastoma stem cells (GSC) have been extensively recognized as a plausible cause of glioblastoma resistance to therapy and recurrence resulting in high glioblastoma mortality. Abnormalities in the DNA repair pathways might be responsible for the inability of the currently used chemotherapeutics to eliminate the (GSC) subpopulation.MethodsIn this work, we compared the expression of sixty DNA repair related genes between primary glioblastoma cell cultures and the glioblastoma enriched stem cell primary cultures. MTT test was used to analyze the effect of selected drugs and immunofluorescence to evaluate the load of DNA damage.ResultsWe found several differentially expressed genes and we identified topoisomerase IIβ (Top2β) as the gene with highest up-regulation in GSC. Also among the tested cell lines the expression of Top2β was the highest in NCH421k cells, a well-characterized glioblastoma cell line with all the stemness characteristics. On the other hand, Top2β expression markedly decreased upon the induction of differentiation by all trans-retinoic acid. Depletion of Top2β increased the sensitivity of NCH421k cells to replication stress inducing drugs, such as cisplatin, methyl-methanesulfonate, hydrogen peroxide, and temozolomide. Consistently, we found an increased load of DNA damage and increased Chk1 activation upon Top2β depletion in NCH421k cells.ConclusionWe suggest that Top2β may represent a new target for gene therapy in glioblastoma. In addition, the other genes that we found to be up-regulated in GSC versus glioblastoma primary cells should be further investigated as glioblastoma theranostics.
Analytical Chemistry | 2016
Paolo Zucchiatti; Elisa Mitri; Saša Kenig; Fulvio Billè; George Kourousias; Diana E. Bedolla; Lisa Vaccari
We report on an optimized protocol for the digestion of cellular RNA, which minimally affects the cell membrane integrity, maintaining substantially unaltered the vibrational contributions of the other cellular macromolecules. The design of this protocol allowed us to collect the first Fourier transform infrared (FTIR) spectra of intact hydrated B16 mouse melanoma cells deprived of RNA and to highlight the in-cell diagnostic spectral features of it. Complementing the cellular results with the FTIR analysis of extracted RNA, ds-DNA, ss-cDNA and isolated nuclei, we verified that the spectral component centered at ∼1220 cm-1 is a good qualitative and semiquantitative marker of cellular DNA, since it is minimally affected by cellular RNA removal. Conversely, the band centered at ∼1240 cm-1, conventionally attributed to RNA, is only a qualitative marker of it, since its intensity is majorly influenced by other macromolecules containing diverse phosphate groups, such as phospholipids and phosphorylated proteins. On the other hand, we proved that the spectral contribution centered at ∼1120 cm-1 is the most reliable indicator of variations in cellular RNA levels, that better correlates with cellular metabolic activity. The achievement of these results have been made possible also by the implementation of new methods for baseline correction and automated peak fitting, presented in this paper.
Biophysical Chemistry | 2015
Saša Kenig; Diana E. Bedolla; Giovanni Birarda; Valentina Faoro; Elisa Mitri; Alessandro Vindigni; Paola Storici; Lisa Vaccari
According to the cancer stem cell theory malignant glioma is incurable because of the presence of the cancer stem cells - a subpopulation of cells that are resistant to therapy and cause the recurrence of a tumor after surgical resection. Several protein markers of cancer stem cell were reported but none of those is fully reliable to grade the content of stem cells in a tumor. Hereby we propose Fourier transform infrared (FTIR) microspectroscopy as an alternative, labelfree, non-damaging and fast method to identify glioma stem cells based on their own spectral characteristics. The analysis of FTIR data revealed that in NCH421k cells, a model of glioma stem cells, the relative content of lipids is higher than in their all-trans retinoic acid-differentiated counterparts. Moreover, it has been assessed that stem cells have more rigid cellular membranes and more phosphorylated proteins, whereas after differentiation glycogen level increases. The ability of FTIR to estimate the content of stem cells in a heterogeneous sample, on the base of the identified spectral markers, and to classify stem and non-stem cells into two separate populations was probed. Although it was not possible to calculate the exact percentage of each subpopulation, we could clearly see that with the increasing amount of differentiated cells in a sample, more hits occupy the PC space previously identified as a space of differentiated cells. The present study is therefore an initial step towards the development of a FTIR based protocol in clinical practice to estimate the content of stem cells in a tumor sample.
Genes | 2017
Miloš Vittori; Barbara Breznik; Katja Hrovat; Saša Kenig; Tamara T. Lah
RECQ1 helicase has multiple roles in DNA replication, including restoration of the replication fork and DNA repair, and plays an important role in tumour progression. Its expression is highly elevated in glioblastoma as compared to healthy brain tissue. We studied the effects of small hairpin RNA (shRNA)-induced silencing of RECQ1 helicase on the increase in cell number and the invasion of U87 glioblastoma cells. RECQ1 silencing reduced the rate of increase in the number of U87 cells by 30%. This corresponded with a 40% reduction of the percentage of cells in the G2 phase of the cell cycle, and an accumulation of cells in the G1 phase. These effects were confirmed in vivo, in the brain of zebrafish (Danio rerio) embryos, by implanting DsRed-labelled RECQ1 helicase-silenced and control U87 cells. The growth of resulting tumours was quantified by monitoring the increase in xenograft fluorescence intensity during a three-day period with fluorescence microscopy. The reduced rate of tumour growth, by approximately 30% in RECQ1 helicase-silenced cells, was in line with in vitro measurements of the increase in cell number upon RECQ1 helicase silencing. However, RECQ1 helicase silencing did not affect invasive behaviour of U87 cells in the zebrafish brain. This is the first in vivo confirmation that RECQ1 helicase is a promising molecular target in the treatment of glioblastoma.