Sasa Vukelic
Emory University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sasa Vukelic.
Journal of Biological Chemistry | 2006
Olivera Stojadinovic; Brian Lee; Constantinos Vouthounis; Sasa Vukelic; Irena Pastar; Miroslav Blumenberg; Harold Brem; Marjana Tomic-Canic
Glucocorticoids (GCs) have a long history of use as therapeutic agents for numerous skin diseases. Surprisingly, their specific molecular effects are largely unknown. To characterize GC action in epidermis, we compared the transcriptional profiles of primary human keratinocytes untreated and treated with dexamethasone (DEX) for 1, 4, 24, 48, and 72 h using large scale microarray analyses. The majority of genes were found to be regulated only after 24 h and remained regulated throughout treatment. In addition to regulation of the expected pro-inflammatory genes, we found that GCs regulate cell fate, tissue remodeling, cell motility, differentiation, and metabolism. GCs suppress the expression of essentially all IFNγ-regulated genes, including IFNγ receptor and STAT-1, an effect that was previously unknown. GCs also block STAT-1 activation and nuclear translocation. Unexpectedly, GCs induce the expression of anti-apoptotic genes and repress pro-apoptotic ones, preventing UV-induced keratinocyte apoptosis. Consequently, treatment with GCs blocked UV-induced apoptosis of keratinocytes. GCs have profound effect on wound healing by inhibiting cell motility and the expression of the proangiogenic factor, vascular endothelial growth factor. They play an important role in tissue remodeling and scar formation by suppressing the expression of TGFβ1 and -2 and MMP1, -2, -9, and -10 and inducing TIMP-2. Finally, GCs promote terminal epidermal differentiation while simultaneously inhibiting early stage differentiation. These results provide new insights into the beneficial and adverse effects of GCs in the epidermis, defining the participating genes and mechanisms that coordinate the cellular responses important for GC-based therapies.
Journal of Biological Chemistry | 2011
Sasa Vukelic; Olivera Stojadinovic; Irena Pastar; Morgan Rabach; Agata Krzyzanowska; Elizabeth Lebrun; Stephen C. Davis; Sydney Resnik; Harold Brem; Marjana Tomic-Canic
Glucocorticoids (GCs) are known inhibitors of wound healing. In this study we report the novel finding that both keratinocytes in vitro and epidermis in vivo synthesize cortisol and how this synthesis regulates wound healing. We show that epidermis expresses enzymes essential for cortisol synthesis, including steroid 11 β-hydroxylase (CYP11B1), and an enzyme that controls negative feedback mechanism, 11β-hydroxysteroid dehydrogenase 2 (11βHSD2). We also found that cortisol synthesis in keratinocytes and skin can be stimulated by ACTH and inhibited by metyrapone (CYP11B1 enzyme inhibitor). Interestingly, IL-1β, the first epidermal signal of tissue injury, induces the expression of CYP11B1 and increases cortisol production by keratinocytes. Additionally, we found induction of CYP11B1 increased production of cortisol and activation of GR pathway during wound healing ex vivo and in vivo using human and porcine wound models, respectively. Conversely, inhibition of cortisol synthesis during wound healing increases IL-1β production, suggesting that cortisol synthesis in epidermis may serve as a local negative feedback to proinflammatory cytokines. Local GCs synthesis, therefore, may provide control of the initial proinflammatory response, preventing excessive inflammation upon tissue injury. Inhibition of GC synthesis accelerated wound closure in vivo, providing the evidence that modulation of cortisol synthesis in epidermis may be an important regulatory mechanism during wound healing.
Journal of Cellular and Molecular Medicine | 2008
Olivera Stojadinovic; Irena Pastar; Sasa Vukelic; Mỹ G. Mahoney; Donna Brennan; Agata Krzyzanowska; Michael S. Golinko; Harold Brem; Marjana Tomic-Canic
Epidermal morphology of chronic wounds differs from that of normal epidermis. Biopsies of non‐healing edges obtained from patients with venous ulcers show thick and hyperproliferative epidermis with mitosis present in suprabasal layers. This epidermis is also hyper‐keratotic and parakeratotic. This suggests incomplete activation and differentiation of keratinocytes. To identify molecular changes that lead to pathogenic alterations in keratinocyte activation and differentiation pathways we isolated mRNA from non‐healing edges deriving from venous ulcers patients and determined transcriptional profiles using Affymetrix chips. Obtained transcriptional profiles were compared to those from healthy, unwounded skin. As previously indicated by histology, we found deregulation of differentiation and activation markers. We also found differential regulation of signalling molecules that regulate these two processes. Early differentiation markers, keratins K1/K10 and a subset of small proline‐rich proteins, along with the late differentiation marker filaggrin were suppressed, whereas late differentiation markers involucrin, transgultaminase 1 and another subset of small proline‐rich proteins were induced in ulcers when compared to healthy skin. Surprisingly, desomosomal and tight junction components were also deregulated. Keratinocyte activation markers keratins K6/K16/K17 were induced. We conclude that keratinocytes at the non‐healing edges of venous ulcers do not execute either activation or differentiation pathway, resulting in thick callus‐like formation at the edge of a venous ulcers.
Journal of Biological Chemistry | 2010
Sasa Vukelic; Olivera Stojadinovic; Irena Pastar; Constantinos Vouthounis; Agata Krzyzanowska; Sharmistha Das; Herbert H. Samuels; Marjana Tomic-Canic
Farnesyl pyrophosphate (FPP), a key intermediate in the mevalonate pathway and protein farnesylation, can act as an agonist for several nuclear hormone receptors. Here we show a novel mechanism by which FPP inhibits wound healing acting as an agonist for glucocorticoid receptor (GR). Elevation of endogenous FPP by the squalene synthetase inhibitor zaragozic acid A (ZGA) or addition of FPP to the cell culture medium results in activation and nuclear translocation of the GR, a known wound healing inhibitor. We used functional studies to evaluate the effects of FPP on wound healing. Both FPP and ZGA inhibited keratinocyte migration and epithelialization in vitro and ex vivo. These effects were independent of farnesylation and indicate that modulation of FPP levels in skin may be beneficial for wound healing. FPP inhibition of keratinocyte migration and wound healing proceeds, in part, by repression of the keratin 6 gene. Furthermore, we show that the 3-hydroxy-3-methylglutaryl-CoA-reductase inhibitor mevastatin, which blocks FPP formation, not only promotes epithelialization in acute wounds but also reverses the effect of ZGA on activation of the GR and inhibition of epithelialization. We conclude that FPP inhibits wound healing by acting as a GR agonist. Of special interest is that FPP is naturally present in cells prior to glucocorticoid synthesis and that FPP levels can be further altered by the statins. Therefore, our findings may provide a better understanding of the pleiotropic effects of statins as well as molecular mechanisms by which they may accelerate wound healing.
Journal of Translational Medicine | 2008
Harold Brem; Michael S. Golinko; Olivera Stojadinovic; Arber Kodra; Robert F. Diegelmann; Sasa Vukelic; Hyacinth Entero; Donald L. Coppock; Marjana Tomic-Canic
BackgroundMultiple physiologic impairments are responsible for chronic wounds. A cell line grown which retains its phenotype from patient wounds would provide means of testing new therapies. Clinical information on patients from whom cells were grown can provide insights into mechanisms of specific disease such as diabetes or biological processes such as aging.The objective of this study was 1) To culture human cells derived from patients with chronic wounds and to test the effects of putative therapies, Granulocyte-Macrophage Colony Stimulating Factor (GM-CSF) on these cells. 2) To describe a methodology to create fibroblast cell lines from patients with chronic wounds.MethodsPatient biopsies were obtained from 3 distinct locations on venous ulcers. Fibroblasts derived from different wound locations were tested for their migration capacities without stimulators and in response to GM-CSF. Another portion of the patient biopsy was used to develop primary fibroblast cultures after rigorous passage and antimicrobial testing.ResultsFibroblasts from the non-healing edge had almost no migration capacity, wound base fibroblasts were intermediate, and fibroblasts derived from the healing edge had a capacity to migrate similar to healthy, normal, primary dermal fibroblasts. Non-healing edge fibroblasts did not respond to GM-CSF. Six fibroblast cell lines are currently available at the National Institute on Aging (NIA) Cell Repository.ConclusionWe conclude that primary cells from chronic ulcers can be established in culture and that they maintain their in vivo phenotype. These cells can be utilized for evaluating the effects of wound healing stimulators in vitro.
American Journal of Physiology-heart and Circulatory Physiology | 2014
Srinivasa Raju Datla; Daniel J. McGrail; Sasa Vukelic; Lauren P. Huff; Alicia N. Lyle; Lily Pounkova; Minyoung Lee; Bonnie Seidel-Rogol; Mazen Khalil; Lula Hilenski; Lance S. Terada; Michelle R. Dawson; Bernard Lassègue; Kathy K. Griendling
Polymerase-δ-interacting protein 2 (Poldip2) interacts with NADPH oxidase 4 (Nox4) and regulates migration; however, the precise underlying mechanisms are unclear. Here, we investigated the role of Poldip2 in focal adhesion turnover, as well as traction force generation and polarization. Poldip2 overexpression (AdPoldip2) in vascular smooth muscle cells (VSMCs) impairs PDGF-induced migration and induces a characteristic phenotype of long cytoplasmic extensions. AdPoldip2 also prevents the decrease in spreading and increased aspect ratio observed in response to PDGF and slightly impairs cell contraction. Moreover, AdPoldip2 blocks focal adhesion dissolution and sustains H2O2 levels in focal adhesions, whereas Poldip2 knockdown (siPoldip2) significantly decreases the number of focal adhesions. RhoA activity is unchanged when focal adhesion dissolution is stimulated in control cells but increases in AdPoldip2-treated cells. Inhibition of RhoA blocks Poldip2-mediated attenuation of focal adhesion dissolution, and overexpression of RhoA or focal adhesion kinase (FAK) reverses the loss of focal adhesions induced by siPoldip2, indicating that RhoA and FAK mediate the effect of Poldip2 on focal adhesions. Nox4 silencing prevents focal adhesion stabilization by AdPoldip2 and induces a phenotype similar to siPoldip2, suggesting a role for Nox4 in Poldip2-induced focal adhesion stability. As a consequence of impaired focal adhesion turnover, PDGF-treated AdPoldip2 cells are unable to reduce and polarize traction forces, a necessary first step in migration. These results implicate Poldip2 in VSMC migration via regulation of focal adhesion turnover and traction force generation in a Nox4/RhoA/FAK-dependent manner.
Wound Repair and Regeneration | 2014
Olivera Stojadinovic; Irena Pastar; Aron G. Nusbaum; Sasa Vukelic; Agata Krzyzanowska; Marjana Tomic-Canic
The epidermis is maintained by epidermal stem cells (ESCs) that reside in distinct niches and contribute to homeostasis and wound closure. Keratinocytes at the nonhealing edges of venous ulcers (VUs) are healing‐incompetent, hyperproliferative, and nonmigratory, suggesting deregulation of ESCs. To date, genes which regulate ESC niches have been studied in mice only. Utilizing microarray analysis of VU nonhealing edges, we identified changes in expression of genes harboring regulation of ESCs and their fate. In a prospective clinical study of 10 VUs, we confirmed suppression of the bone morphogenetic protein receptor (BMPR) and GATA binding protein 3 (GATA3) as well as inhibitors of DNA‐binding proteins 2 and 4 (ID2 and ID4). We also found decreased levels of phosphorylated glycogen synthase kinase 3 (GSK3), nuclear presence of β‐catenin, and overexpression of its transcriptional target, c‐myc, indicating activation of the Wnt pathway. Additionally, we found down‐regulation of leucine‐rich repeats and immunoglobulin‐like domains protein 1 (LRIG1), a gene important for maintaining ESCs in a quiescent state, and absence of keratin 15 (K15), a marker of the basal stem cell compartment suggesting local depletion of ESCs. Our study shows that loss of genes important for regulation of ESCs and their fate along with activation of β‐catenin and c‐myc in the VU may contribute to ESC deprivation and a hyperproliferative, nonmigratory healing incapable wound edge.
Journal of The American College of Surgeons | 2009
Michael S. Golinko; Renata Joffe; David de Vinck; Eashwar Chandrasekaran; Olivera Stojadinovic; Stephan Barrientos; Sasa Vukelic; Marjana Tomic-Canic; Harold Brem
BACKGROUND Chronic wounds, including diabetic foot ulcers (DFU), pressure ulcers (PU), and venous ulcers (VU) result from multiple physiologic impairments. Operative debridement is a mainstay of treatment to remove nonviable tissue and to stimulate wound healing. Unlike tumor resection, however, operative wound specimens are not routinely sent for pathology. The objective of this study was to describe the pathology present in chronic wounds. STUDY DESIGN Pathology reports of the skin edge and wound base from 397 initial debridements in 336 consecutive patients with chronic wounds were retrospectively reviewed. All data were entered and stored in a Wound Electronic Medical Record. Pathology data were extracted from the Wound Electronic Medical Record, coded, and quantified. RESULTS Up to 15 distinct histopathologic findings across 7 tissue types were observed after review of pathology reports from chronic wounds. Specifically, the pathology of epidermis revealed hyperkeratosis: 66% in DFUs, 31% in PUs, and 29% in VUs. Dermal pathology revealed fibrosis in 49% of DFUs, 30% of PUs, and 15% of VUs. Wound bed pathology revealed necrosis in the subcutaneous tissue in 67% of DFUs, 55% of PUs, and 19% of VUs. Fibrosis was reported in between 19% and 52% of all wound types. Acute osteomyelitis was present in 39% of DFUs, 33% of PUs, and 29% of VUs. CONCLUSIONS This observational study of the histopathology of initial surgical debridement of chronic wounds revealed a wide range of findings across multiple tissue levels. Although certain findings such as osteomyelitis and gangrene have been shown to directly relate to impaired wound healing and amputation, other findings require additional investigation. To rigorously define a margin of debridement, a prospective study relating histopathology and clinical outcomes such as healing rates and amputation is needed.
Circulation Research | 2014
Sasa Vukelic; Kathy K. Griendling
Angiotensin II (Ang II) is today considered as one of the essential factors in the pathophysiology of cardiovascular disease, producing acute hemodynamic and chronic pleiotropic effects. Although now it is widely accepted that these chronic effects are important, Ang II was initially considered only a short-acting, vasoactive hormone. This view was modified a quarter of a century ago when Dr Owens and his group published an article in Circulation Research with initial evidence that Ang II can act as a growth factor that regulates cell hypertrophy. They showed in a series of elegant experiments that Ang II promotes hypertrophy and hyperploidy of cultured rat aortic smooth muscle cells. However, Ang II had no effect on hyperplasia. These findings led to a paradigm shift in our understanding of the roles of growth factors and vasoactive substances in cardiovascular pathology and helped to redirect basic and clinical renin–angiotensin system research during the next 25 years. Ang II is now known to be a pleiotropic hormone that uses multiple signaling pathways to influence most processes that contribute to the development and progression of cardiovascular diseases, ranging from hypertrophy, endothelial dysfunction, cardiac remodeling, fibrosis, and inflammation to oxidative stress. The renin–angiotensin system (RAS) is now considered one of the essential factors in the pathophysiology of cardiovascular disease. The main effector of the RAS, angiotensin II (Ang II), contributes to the development of cardiovascular disease as both an endocrine and a local autocrine/paracrine hormone, producing acute (vasoconstriction, water/salt retention) and more importantly chronic (hypertrophy, hyperplasia, oxidative stress, fibrosis, and inflammation) effects. Today, it is widely accepted that these chronic effects have a critical role in the development and progression of cardiovascular diseases, such as hypertension, atherosclerosis, and heart failure. Initially, Ang II was considered predominantly as a short-acting, vasoactive hormone, and its role in the …
Journal of Cellular Physiology | 2016
Irena Pastar; Olivera Stojadinovic; Andrew Sawaya; Rivka C. Stone; Linsey E. Lindley; Nkemcho Ojeh; Sasa Vukelic; Herbert H. Samuels; Marjana Tomic-Canic
Skin produces cholesterol and a wide array of sterols and non‐sterol mevalonate metabolites, including isoprenoid derivative farnesyl pyrophosphate (FPP). To characterize FPP action in epidermis, we generated transcriptional profiles of primary human keratinocytes treated with zaragozic acid (ZGA), a squalene synthase inhibitor that blocks conversion of FPP to squalene resulting in endogenous accumulation of FPP. The elevated levels of intracellular FPP resulted in regulation of epidermal differentiation and adherens junction signaling, insulin growth factor (IGF) signaling, oxidative stress response and interferon (IFN) signaling. Immunosuppressive properties of FPP were evidenced by STAT‐1 downregulation and prominent suppression of its nuclear translocation by IFNγ. Furthermore, FPP profoundly downregulated genes involved in epidermal differentiation of keratinocytes in vitro and in human skin ex vivo. Elevated levels of FPP resulted in induction of cytoprotective transcriptional factor Nrf2 and its target genes. We have previously shown that FPP functions as ligand for the glucocorticoid receptor (GR), one of the major regulator of epidermal homeostasis. Comparative microarray analyses show significant but not complete overlap between FPP and glucocorticoid regulated genes, suggesting that FPP may have wider transcriptional impact. This was further supported by co‐transfection and chromatin immunoprecipitation experiments where we show that upon binding to GR, FPP recruits β‐catenin and, unlike glucocorticoids, recruits co‐repressor GRIP1 to suppress keratin 6 gene. These findings have many clinical implications related to epidermal lipid metabolism, response to glucocorticoid therapy as well as pleiotropic effects of cholesterol lowering therapeutics, statins. J. Cell. Physiol. 231: 2452–2463, 2016.