Sascha Gille
University of California, Berkeley
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sascha Gille.
Science | 2011
Silvia M. Velasquez; Martiniano M. Ricardi; Javier Gloazzo Dorosz; Paula Virginia Fernández; Alejandro D. Nadra; Laercio Pol-Fachin; Jack Egelund; Sascha Gille; Jesper Harholt; Marina Ciancia; Hugo Verli; Markus Pauly; Antony Bacic; Carl Erik Olsen; Peter Ulvskov; Bent Larsen Petersen; Chris Somerville; Norberto D. Iusem; José M. Estevez
Sequential protein posttranslational modifications facilitate cell wall self-assembly and root hair elongation in Arabidopsis. Root hairs are single cells that develop by tip growth and are specialized in the absorption of nutrients. Their cell walls are composed of polysaccharides and hydroxyproline-rich glycoproteins (HRGPs) that include extensins (EXTs) and arabinogalactan-proteins (AGPs). Proline hydroxylation, an early posttranslational modification of HRGPs that is catalyzed by prolyl 4-hydroxylases (P4Hs), defines the subsequent O-glycosylation sites in EXTs (which are mainly arabinosylated) and AGPs (which are mainly arabinogalactosylated). We explored the biological function of P4Hs, arabinosyltransferases, and EXTs in root hair cell growth. Biochemical inhibition or genetic disruption resulted in the blockage of polarized growth in root hairs and reduced arabinosylation of EXTs. Our results demonstrate that correct O-glycosylation on EXTs is essential for cell-wall self-assembly and, hence, root hair elongation in Arabidopsis thaliana.
Frontiers in Plant Science | 2012
Sascha Gille; Markus Pauly
Plant cell walls are composed of structurally diverse polymers, many of which are O-acetylated. How plants O-acetylate wall polymers and what its function is remained elusive until recently, when two protein families were identified in the model plant Arabidopsis that are involved in the O-acetylation of wall polysaccharides – the reduced wall acetylation (RWA) and the trichome birefringence-like (TBL) proteins. This review discusses the role of these two protein families in polysaccharide O-acetylation and outlines the differences and similarities of polymer acetylation mechanisms in plants, fungi, bacteria, and mammals. Members of the TBL protein family had been shown to impact pathogen resistance, freezing tolerance, and cellulose biosynthesis. The connection of TBLs to polysaccharide O-acetylation thus gives crucial leads into the biological function of wall polymer O-acetylation. From a biotechnological point understanding the O-acetylation mechanism is important as acetyl-substituents inhibit the enzymatic degradation of wall polymers and released acetate can be a potent inhibitor in microbial fermentations, thus impacting the economic viability of, e.g., lignocellulosic based biofuel production.
Plant Physiology | 2011
Yuzuki Manabe; Majse Nafisi; Yves Verhertbruggen; Caroline Orfila; Sascha Gille; Carsten Rautengarten; Candice Cherk; Susan E. Marcus; Shauna Somerville; Markus Pauly; J. Paul Knox; Yumiko Sakuragi; Henrik Vibe Scheller
Nearly all polysaccharides in plant cell walls are O-acetylated, including the various pectic polysaccharides and the hemicelluloses xylan, mannan, and xyloglucan. However, the enzymes involved in the polysaccharide acetylation have not been identified. While the role of polysaccharide acetylation in vivo is unclear, it is known to reduce biofuel yield from lignocellulosic biomass by the inhibition of microorganisms used for fermentation. We have analyzed four Arabidopsis (Arabidopsis thaliana) homologs of the protein Cas1p known to be involved in polysaccharide O-acetylation in Cryptococcus neoformans. Loss-of-function mutants in one of the genes, designated REDUCED WALL ACETYLATION2 (RWA2), had decreased levels of acetylated cell wall polymers. Cell wall material isolated from mutant leaves and treated with alkali released about 20% lower amounts of acetic acid when compared with the wild type. The same level of acetate deficiency was found in several pectic polymers and in xyloglucan. Thus, the rwa2 mutations affect different polymers to the same extent. There were no obvious morphological or growth differences observed between the wild type and rwa2 mutants. However, both alleles of rwa2 displayed increased tolerance toward the necrotrophic fungal pathogen Botrytis cinerea.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Sascha Gille; Ulrike Hänsel; Mark Ziemann; Markus Pauly
A previously undescribed forward chemical genetic screen using hydrolases affecting the extracellular matrix is introduced. The developed screen takes advantage of the power of chemical genetics and combines it with the known substrate specificity of glycosylhydrolases, resulting in the selection of conditional mutants that exhibit structural defects in their extracellular matrix. Identification of the responsible genetic locus in those mutants significantly extends our knowledge of genes involved in the biosynthesis, metabolism, signaling, and functionality of components of the extracellular matrix. The method is exemplified by a screen of mutagenized Arabidopsis plants subjected to growth in liquid culture in the presence of a xyloglucanase, an enzyme acting on the major cross-linking glycan found in the extracellular matrix of this plant. Using this hydrolase-based screen, dozens of plant cell wall mutants (xeg mutants) were identified, leading to the identification of 23 genetic loci that affect plant cell walls. One of the identified loci is XEG113, encoding a family 77 glycosyltransferase (GT77). Detailed analysis of the wall of this mutant indicated that its extensins, structural glyocoproteins present in walls, are underarabinosylated. Xeg-113 plants exhibit more elongated hypocotyls than WT, providing genetic evidence that plant O-glycosylation—more specifically, extensin arabinosylation—is important for cell elongation.
The Plant Cell | 2011
Sascha Gille; Amancio de Souza; Guangyan Xiong; Monique Benz; Kun Cheng; Alex Schultink; Ida-Barbara Reca; Markus Pauly
Most plant cell wall polysaccharides are O-acetylated. However, the acetyltransferases were elusive. Using a forward genetic approach, a putative xyloglucan O-acetyltransferase has now been identified in an unexpected gene family. This opens up future research into the identification of other O-acetyltransferases and the elucidation of the molecular mechanism of polysaccharide O-acetylation. In an Arabidopsis thaliana forward genetic screen aimed at identifying mutants with altered structures of their hemicellulose xyloglucan (axy mutants) using oligosaccharide mass profiling, two nonallelic mutants (axy4-1 and axy4-2) that have a 20 to 35% reduction in xyloglucan O-acetylation were identified. Mapping of the mutation in axy4-1 identified AXY4, a type II transmembrane protein with a Trichome Birefringence-Like domain and a domain of unknown function (DUF231). Loss of AXY4 transcript results in a complete lack of O-acetyl substituents on xyloglucan in several tissues, except seeds. Seed xyloglucan is instead O-acetylated by the paralog AXY4like, as demonstrated by the analysis of the corresponding T-DNA insertional lines. Wall fractionation analysis of axy4 knockout mutants indicated that only a fraction containing xyloglucan is non-O-acetylated. Hence, AXY4/AXY4L is required for the O-acetylation of xyloglucan, and we propose that these proteins represent xyloglucan-specific O-acetyltransferases, although their donor and acceptor substrates have yet to be identified. An Arabidopsis ecotype, Ty-0, has reduced xyloglucan O-acetylation due to mutations in AXY4, demonstrating that O-acetylation of xyloglucan does not impact the plant’s fitness in its natural environment. The relationship of AXY4 with another previously identified group of Arabidopsis proteins involved in general wall O-acetylation, reduced wall acetylation, is discussed.
Plant Physiology | 2013
Yuzuki Manabe; Yves Verhertbruggen; Sascha Gille; Jesper Harholt; Sun-Li Chong; Prashant Mohan-Anupama Pawar; Ewa J. Mellerowicz; Maija Tenkanen; Kun Cheng; Markus Pauly; Henrik Vibe Scheller
Four proteins in Arabidopsis are essential for plant development and play overlapping but different roles in acetylation of cell wall polysaccharides. The Reduced Wall Acetylation (RWA) proteins are involved in cell wall acetylation in plants. Previously, we described a single mutant, rwa2, which has about 20% lower level of O-acetylation in leaf cell walls and no obvious growth or developmental phenotype. In this study, we generated double, triple, and quadruple loss-of-function mutants of all four members of the RWA family in Arabidopsis (Arabidopsis thaliana). In contrast to rwa2, the triple and quadruple rwa mutants display severe growth phenotypes revealing the importance of wall acetylation for plant growth and development. The quadruple rwa mutant can be completely complemented with the RWA2 protein expressed under 35S promoter, indicating the functional redundancy of the RWA proteins. Nevertheless, the degree of acetylation of xylan, (gluco)mannan, and xyloglucan as well as overall cell wall acetylation is affected differently in different combinations of triple mutants, suggesting their diversity in substrate preference. The overall degree of wall acetylation in the rwa quadruple mutant was reduced by 63% compared with the wild type, and histochemical analysis of the rwa quadruple mutant stem indicates defects in cell differentiation of cell types with secondary cell walls.
Plant Physiology | 2011
Christian Hermans; Silvana Porco; Filip Vandenbussche; Sascha Gille; Jérôme De Pessemier; Dominique Van Der Straeten; Nathalie Verbruggen; Daniel R. Bush
The root phenotype of an Arabidopsis (Arabidopsis thaliana) mutant of CHITINASE-LIKE1 (CTL1), called arm (for anion-related root morphology), was previously shown to be conditional on growth on high nitrate, chloride, or sucrose. Mutants grown under restrictive conditions displayed inhibition of primary root growth, radial swelling, proliferation of lateral roots, and increased root hair density. We found here that the spatial pattern of CTL1 expression was mainly in the root and root tips during seedling development and that the protein localized to the cell wall. Fourier-transform infrared microspectroscopy of mutant root tissues indicated differences in spectra assigned to linkages in cellulose and pectin. Indeed, root cell wall polymer composition analysis revealed that the arm mutant contained less crystalline cellulose and reduced methylesterification of pectins. We also explored the implication of growth regulators on the phenotype of the mutant response to the nitrate supply. Exogenous abscisic acid application inhibited more drastically primary root growth in the arm mutant but failed to repress lateral branching compared with the wild type. Cytokinin levels were higher in the arm root, but there were no changes in mitotic activity, suggesting that cytokinin is not directly involved in the mutant phenotype. Ethylene production was higher in arm but inversely proportional to the nitrate concentration in the medium. Interestingly, eto2 and eto3 ethylene overproduction mutants mimicked some of the conditional root characteristics of the arm mutant on high nitrate. Our data suggest that ethylene may be involved in the arm mutant phenotype, albeit indirectly, rather than functioning as a primary signal.
Journal of Visualized Experiments | 2010
Markus Günl; Sascha Gille; Markus Pauly
The direct contact of cells to the environment is mediated in many organisms by an extracellular matrix. One common aspect of extracellular matrices is that they contain complex sugar moieties in form of glycoproteins, proteoglycans, and/or polysaccharides. Examples include the extracellular matrix of humans and animal cells consisting mainly of fibrillar proteins and proteoglycans or the polysaccharide based cell walls of plants and fungi, and the proteoglycan/glycolipid based cell walls of bacteria. All these glycostructures play vital roles in cell-to-cell and cell-to-environment communication and signalling. An extraordinary complex example of an extracellular matrix is present in the walls of higher plant cells. Their wall is made almost entirely of sugars, up to 75% dry weight, and consists of the most abundant biopolymers present on this planet. Therefore, research is conducted how to utilize these materials best as a carbon-neutral renewable resource to replace petrochemicals derived from fossil fuel. The main challenge for fuel conversion remains the recalcitrance of walls to enzymatic or chemical degradation due to the unique glycostructures present in this unique biocomposite. Here, we present a method for the rapid and sensitive analysis of plant cell wall glycostructures. This method OLIgo Mass Profiling (OLIMP) is based the enzymatic release of oligosaccharides from wall materials facilitating specific glycosylhydrolases and subsequent analysis of the solubilized oligosaccharide mixtures using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/MS)1 (Figure 1). OLIMP requires walls of only 5000 cells for a complete analysis, can be performed on the tissue itself2, and is amenable to high-throughput analyses3. While the absolute amount of the solubilized oligosaccharides cannot be determined by OLIMP the relative abundance of the various oligosaccharide ions can be delineated from the mass spectra giving insights about the substitution-pattern of the native polysaccharide present in the wall. OLIMP can be used to analyze a wide variety of wall polymers, limited only by the availability of specific enzymes4. For example, for the analysis of polymers present in the plant cell wall enzymes are available to analyse the hemicelluloses xyloglucan using a xyloglucanase5, 11, 12, 13, xylan using an endo-β-(1-4)-xylanase 6,7, or for pectic polysaccharides using a combination of a polygalacturonase and a methylesterase 8. Furthermore, using the same principles of OLIMP glycosylhydrolase and even glycosyltransferase activities can be monitored and determined 9.
Scientific Reports | 2017
Svenning Rune Møller; Xueying Yi; Silvia M. Velasquez; Sascha Gille; Pernille Louise Munke Hansen; Christian Poulsen; Carl Erik Olsen; Martin Rejzek; Harriet Parsons; Zhang Yang; Hans H. Wandall; Henrik Clausen; Robert A. Field; Markus Pauly; José M. Estevez; Jesper Harholt; Peter Ulvskov; Bent Larsen Petersen
Extensins are plant cell wall glycoproteins that act as scaffolds for the deposition of the main wall carbohydrate polymers, which are interlocked into the supramolecular wall structure through intra- and inter-molecular iso-di-tyrosine crosslinks within the extensin backbone. In the conserved canonical extensin repeat, Ser-Hyp4, serine and the consecutive C4-hydroxyprolines (Hyps) are substituted with an α-galactose and 1–5 β- or α-linked arabinofuranoses (Arafs), respectively. These modifications are required for correct extended structure and function of the extensin network. Here, we identified a single Arabidopsis thaliana gene, At3g57630, in clade E of the inverting Glycosyltransferase family GT47 as a candidate for the transfer of Araf to Hyp-arabinofuranotriose (Hyp-β1,4Araf-β1,2Araf-β1,2Araf) side chains in an α-linkage, to yield Hyp-Araf4 which is exclusively found in extensins. T-DNA knock-out mutants of At3g57630 showed a truncated root hair phenotype, as seen for mutants of all hitherto characterized extensin glycosylation enzymes; both root hair and glycan phenotypes were restored upon reintroduction of At3g57630. At3g57630 was named Extensin Arabinose Deficient transferase, ExAD, accordingly. The occurrence of ExAD orthologs within the Viridiplantae along with its’ product, Hyp-Araf4, point to ExAD being an evolutionary hallmark of terrestrial plants and charophyte green algae.
Scientific Reports | 2017
Svenning Rune Møller; Xueying Yi; Silvia M. Velasquez; Sascha Gille; Pernille Louise Munke Hansen; Christian Poulsen; Carl Erik Olsen; Martin Rejzek; Harriet Parsons; Zhang Yang; Hans H. Wandall; Henrik Clausen; Robert A. Field; Markus Pauly; José M. Estevez; Jesper Harholt; Peter Ulvskov; Bent Larsen Petersen
Scientific Reports 7: Article number: 45341; published online: 30 March 2017; updated: 23 May 2017. The original version of this Article contained an error in the spelling of the author Zhang Yang, which was incorrectly given as Yang Zhang. The Author Contributions Statement, S.R.M., X.Y., S.M.V., S.G.Scientific Reports 7: Article number: 45341; published online: 30 March 2017; updated: 23 May 2017. The original version of this Article contained an error in the spelling of the author Zhang Yang, which was incorrectly given as Yang Zhang. The Author Contributions Statement, S.R.M., X.Y., S.M.V., S.G.