Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sascha Kempf is active.

Publication


Featured researches published by Sascha Kempf.


Nature | 2009

Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus

Frank Postberg; Sascha Kempf; Jürgen Schmidt; Nikolai V. Brilliantov; A. Beinsen; Bernd Abel; Udo Buck; Ralf Srama

Saturns moon Enceladus emits plumes of water vapour and ice particles from fractures near its south pole, suggesting the possibility of a subsurface ocean. These plume particles are the dominant source of Saturn’s E ring. A previous in situ analysis of these particles concluded that the minor organic or siliceous components, identified in many ice grains, could be evidence for interaction between Enceladus’ rocky core and liquid water. It was not clear, however, whether the liquid is still present today or whether it has frozen. Here we report the identification of a population of E-ring grains that are rich in sodium salts (∼0.5–2% by mass), which can arise only if the plumes originate from liquid water. The abundance of various salt components in these particles, as well as the inferred basic pH, exhibit a compelling similarity to the predicted composition of a subsurface Enceladus ocean in contact with its rock core. The plume vapour is expected to be free of atomic sodium. Thus, the absence of sodium from optical spectra is in good agreement with our results. In the E ring the upper limit for spectroscopy is insufficiently sensitive to detect the concentrations we found.


Nature | 2011

A salt-water reservoir as the source of a compositionally stratified plume on Enceladus

Frank Postberg; Jürgen Schmidt; Jon K. Hillier; Sascha Kempf; Ralf Srama

The discovery of a plume of water vapour and ice particles emerging from warm fractures (‘tiger stripes’) in Saturns small, icy moon Enceladus raised the question of whether the plume emerges from a subsurface liquid source or from the decomposition of ice. Previous compositional analyses of particles injected by the plume into Saturns diffuse E ring have already indicated the presence of liquid water, but the mechanisms driving the plume emission are still debated. Here we report an analysis of the composition of freshly ejected particles close to the sources. Salt-rich ice particles are found to dominate the total mass flux of ejected solids (more than 99 per cent) but they are depleted in the population escaping into Saturns E ring. Ice grains containing organic compounds are found to be more abundant in dense parts of the plume. Whereas previous Cassini observations were compatible with a variety of plume formation mechanisms, these data eliminate or severely constrain non-liquid models and strongly imply that a salt-water reservoir with a large evaporating surface provides nearly all of the matter in the plume.


Nature | 2008

Slow dust in Enceladus' plume from condensation and wall collisions in tiger stripe fractures.

Jürgen Schmidt; Nikolai V. Brilliantov; Frank Spahn; Sascha Kempf

One of the spectacular discoveries of the Cassini spacecraft was the plume of water vapour and icy particles (dust) originating near the south pole of Saturn’s moon Enceladus. The data imply considerably smaller velocities for the grains than for the vapour, which has been difficult to understand. The gas and dust are too dilute in the plume to interact, so the difference must arise below the surface. Here we report a model for grain condensation and growth in channels of variable width. We show that repeated wall collisions of grains, with re-acceleration by the gas, induce an effective friction, offering a natural explanation for the reduced grain velocity. We derive particle speed and size distributions that reproduce the observed and inferred properties of the dust plume. The gas seems to form near the triple point of water; gas densities corresponding to sublimation from ice at temperatures less than 260 K are generally too low to support the measured particle fluxes. This in turn suggests liquid water below Enceladus’ south pole.


Nature | 2005

High-velocity streams of dust originating from Saturn

Sascha Kempf; Ralf Srama; Mihaly Horanyi; Marcia Burton; Stefan F. Helfert; Georg Moragas-Klostermeyer; Mou Roy; E. Grün

High-velocity submicrometre-sized dust particles expelled from the jovian system have been identified by dust detectors on board several spacecraft. On the basis of periodicities in the dust impact rate, Jupiters moon Io was found to be the dominant source of the streams. The grains become positively charged within the plasma environment of Jupiters magnetosphere, and gain energy from its co-rotational electric field. Outside the magnetosphere, the dynamics of the grains are governed by the interaction with the interplanetary magnetic field that eventually forms the streams. A similar process was suggested for Saturn. Here we report the discovery by the Cassini spacecraft of bursts of high-velocity dust particles (≥ 100 km s-1) within ∼70 million kilometres of Saturn. Most of the particles detected at large distances appear to originate from the outskirts of Saturns outermost main ring. All bursts of dust impacts detected within 150 Saturn radii are characterized by impact directions markedly different from those measured between the bursts, and they clearly coincide with the spacecrafts traversals through streams of compressed solar wind.


Science | 2010

An Evolving View of Saturn’s Dynamic Rings

Jeffrey N. Cuzzi; Joseph A. Burns; Sebastien Charnoz; R.N. Clark; Josh Colwell; Luke Dones; Larry W. Esposito; G. Filacchione; Richard G. French; Matthew Mckay Hedman; Sascha Kempf; Essam A. Marouf; Carl D. Murray; P. D. Nicholson; Carolyn C. Porco; Juergen Schmidt; Mark R. Showalter; Linda J. Spilker; Joseph Nicholas Spitale; Ralf Srama; Miodrag Sremcevic; Matthew S. Tiscareno; John Wilfred Weiss

Saturns Secrets Probed The Cassini spacecraft was launched on 15 October 1997. It took it almost 7 years to reach Saturn, the second-largest planet in the solar system. After almost 6 years of observations of the series of interacting moons, rings, and magnetospheric plasmas, known as the Kronian system, Cuzzi et al. (p. 1470) review our current understanding of Saturns rings—the most extensive and complex in the solar system—and draw parallels with circumstellar disks. Gombosi and Ingersoll (p. 1476; see the cover) review what is known about Saturns atmosphere, ionosphere, and magnetosphere. We review our understanding of Saturn’s rings after nearly 6 years of observations by the Cassini spacecraft. Saturn’s rings are composed mostly of water ice but also contain an undetermined reddish contaminant. The rings exhibit a range of structure across many spatial scales; some of this involves the interplay of the fluid nature and the self-gravity of innumerable orbiting centimeter- to meter-sized particles, and the effects of several peripheral and embedded moonlets, but much remains unexplained. A few aspects of ring structure change on time scales as short as days. It remains unclear whether the vigorous evolutionary processes to which the rings are subject imply a much younger age than that of the solar system. Processes on view at Saturn have parallels in circumstellar disks.


Nature | 2015

A permanent, asymmetric dust cloud around the Moon

Mihaly Horanyi; J. R. Szalay; Sascha Kempf; Jürgen Schmidt; E. Grün; Ralf Srama; Zoltan Sternovsky

Interplanetary dust particles hit the surfaces of airless bodies in the Solar System, generating charged and neutral gas clouds, as well as secondary ejecta dust particles. Gravitationally bound ejecta clouds that form dust exospheres were recognized by in situ dust instruments around the icy moons of Jupiter and Saturn, but have hitherto not been observed near bodies with refractory regolith surfaces. High-altitude Apollo 15 and 17 observations of a ‘horizon glow’ indicated a putative population of high-density small dust particles near the lunar terminators, although later orbital observations yielded upper limits on the abundance of such particles that were a factor of about 104 lower than that necessary to produce the Apollo results. Here we report observations of a permanent, asymmetric dust cloud around the Moon, caused by impacts of high-speed cometary dust particles on eccentric orbits, as opposed to particles of asteroidal origin following near-circular paths striking the Moon at lower speeds. The density of the lunar ejecta cloud increases during the annual meteor showers, especially the Geminids, because the lunar surface is exposed to the same stream of interplanetary dust particles. We expect all airless planetary objects to be immersed in similar tenuous clouds of dust.


Science | 2008

The Dust Halo of Saturn's Largest Icy Moon, Rhea

G. H. Jones; E. Roussos; N. Krupp; Uwe Beckmann; A. J. Coates; Frank Judson Crary; Iannis Dandouras; Valeri Dikarev; M. K. Dougherty; P. Garnier; Candice J. Hansen; Amanda R. Hendrix; G. B. Hospodarsky; Robert E. Johnson; Sascha Kempf; Krishan K. Khurana; S. M. Krimigis; Harald Krüger; W. S. Kurth; A. Lagg; H. J. McAndrews; D. G. Mitchell; C. Paranicas; Frank Postberg; C. T. Russell; Joachim Saur; Martin Seiß; Frank Spahn; Ralf Srama; Darrell F. Strobel

Saturns moon Rhea had been considered massive enough to retain a thin, externally generated atmosphere capable of locally affecting Saturns magnetosphere. The Cassini spacecrafts in situ observations reveal that energetic electrons are depleted in the moons vicinity. The absence of a substantial exosphere implies that Rheas magnetospheric interaction region, rather than being exclusively induced by sputtered gas and its products, likely contains solid material that can absorb magnetospheric particles. Combined observations from several instruments suggest that this material is in the form of grains and boulders up to several decimetres in size and orbits Rhea as an equatorial debris disk. Within this disk may reside denser, discrete rings or arcs of material.


Review of Scientific Instruments | 2012

3 MV hypervelocity dust accelerator at the Colorado Center for Lunar Dust and Atmospheric Studies

Anthony Shu; Andrew Collette; Keith Drake; E. Grün; Mihaly Horanyi; Sascha Kempf; Anna Mocker; T. Munsat; P. Northway; Ralf Srama; Zoltan Sternovsky; Evan Thomas

A hypervelocity dust accelerator for studying micrometeorite impacts has been constructed at the Colorado Center for Lunar Dust and Atmospheric Studies (CCLDAS) at the University of Colorado. Based on the Max-Planck-Institüt für Kernphysik (MPI-K) accelerator, this accelerator is capable of emitting single particles of a specific mass and velocity selected by the user. The accelerator consists of a 3 MV Pelletron generator with a dust source, four image charge pickup detectors, and two interchangeable target chambers: a large high-vacuum test bed and an ultra-high vacuum impact study chamber. The large test bed is a 1.2 m diameter, 1.5 m long cylindrical vacuum chamber capable of pressures as low as 10(-7) torr while the ultra-high vacuum chamber is a 0.75 m diameter, 1.1 m long chamber capable of pressures as low as 10(-10) torr. Using iron dust of up to 2 microns in diameter, final velocities have been measured up to 52 km/s. The spread of the dust particles and the effect of electrostatic focusing have been measured using a long exposure CCD and a quartz target. Furthermore, a new technique of particle selection is being developed using real time digital filtering techniques. Signals are digitized and then cross-correlated with a shaped filter, resulting in a suppressed noise floor. Improvements over the MPI-K design, which include a higher operating voltage and digital filtering for detection, increase the available parameter space of dust emitted by the accelerator. The CCLDAS dust facility is a user facility open to the scientific community to assist with instrument calibrations and experiments.


Journal of Geophysical Research | 2005

Interstellar dust flux measurements by the Galileo dust instrument between the orbits of Venus and Mars

Nicolas Altobelli; Sascha Kempf; Harald Krüger; Markus Landgraf; Mou Roy; E. Grün

[i] We present an analysis of the data obtained by the Galileo in situ dust instrument for interstellar dust (ISD). Between December 1989 and the end of 1993, three orbit segments were favorable for the detection of ISD at less than 3 AU heliocentric distance. After removing background events from the data sample, which were mostly due to interplanetary dust impactors, we infer that the flux of ISD grains between 0.7 AU and 3 AU is about 4 x 10 -5 m -2 s -1 . This result is compatible with the ISD flux of 3 × 10 -5 m -2 s -1 (grain size 0.4 μm) derived from the Cassini measurements at about 1 AU. Using a new concept called ISD β spectroscopy, we are able to estimate at different locations in the inner solar system the ISD flux alteration resulting from the competing effects of radiation pressure and gravitation. In particular, we confirm results of previous Ulysses dust data analysis showing that radiation pressure prevents smaller ISD grains (radius smaller than 0.3 μm) from reaching the innermost region of the solar system. Furthermore, our analysis shows the relevance of gravitational focusing in the dynamics of bigger ISD grains (micron-sized grains). The Galileo measurements were performed 10 years before the Cassini measurements. Thus the available ISD data now cover almost a full 11-year solar cycle. Nonetheless, the flux of ISD grains with radius bigger than 0.4 μm shows no significant temporal variation. This suggests that the dynamics of these ISD grains is not influenced much by the interaction with the time-dependent solar magnetic field.


Rapid Communications in Mass Spectrometry | 2009

Mass spectrometry of hyper-velocity impacts of organic micrograins

Ralf Srama; Wolfgang Woiwode; Frank Postberg; Steven P. Armes; Syuji Fujii; Damien Dupin; Jonathan Ormond-Prout; Zoltan Sternovsky; Sascha Kempf; Georg Moragas-Klostermeyer; Anna Mocker; E. Grün

The study of hyper-velocity impacts of micrometeoroids is important for the calibration of dust sensors in space applications. For this purpose, submicron-sized synthetic dust grains comprising either polystyrene or poly[bis(4-vinylthiophenyl)sulfide] were coated with an ultrathin overlayer of an electrically conductive organic polymer (either polypyrrole or polyaniline) and were accelerated to speeds between 3 and 35 km s(-1) using the Heidelberg Dust Accelerator facility. Time-of-flight mass spectrometry was applied to analyse the resulting ionic impact plasma using a newly developed Large Area Mass Analyser (LAMA). Depending on the projectile type and the impact speed, both aliphatic and aromatic molecular ions and cluster species were identified in the mass spectra with masses up to 400 u. Clusters resulting from the target material (silver) and mixed clusters of target and projectile species were also observed. Impact velocities of between 10 and 35 km s(-1) are suitable for a principal identification of organic materials in micrometeoroids, whereas impact speeds below approximately 10 km s(-1) allow for an even more detailed analysis. Molecular ions and fragments reflect components of the parent molecule, providing determination of even complex organic molecules embedded in a dust grain. In contrast to previous measurements with the Cosmic Dust Analyser instrument, the employed LAMA instrument has a seven times higher mass resolution--approximately 200--which allowed for a detailed analysis of the complex mass spectra. These fundamental studies are expected to enhance our understanding of cometary, interplanetary and interstellar dust grains, which travel at similar hyper-velocities and are known to contain both aliphatic and aromatic organic compounds.

Collaboration


Dive into the Sascha Kempf's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frank Postberg

Free University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Zoltan Sternovsky

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mihaly Horanyi

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge