Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sascha Tierling is active.

Publication


Featured researches published by Sascha Tierling.


Journal of Experimental Medicine | 2005

Promiscuous gene expression in thymic epithelial cells is regulated at multiple levels

Jens Derbinski; Jana Gäbler; Benedikt Brors; Sascha Tierling; Sunitha Jonnakuty; Manfred Hergenhahn; Leena Peltonen; Jörn Walter; Bruno Kyewski

The role of central tolerance induction has recently been revised after the discovery of promiscuous expression of tissue-restricted self-antigens in the thymus. The extent of tissue representation afforded by this mechanism and its cellular and molecular regulation are barely defined. Here we show that medullary thymic epithelial cells (mTECs) are specialized to express a highly diverse set of genes representing essentially all tissues of the body. Most, but not all, of these genes are induced in functionally mature CD80hi mTECs. Although the autoimmune regulator (Aire) is responsible for inducing a large portion of this gene pool, numerous tissue-restricted genes are also up-regulated in mature mTECs in the absence of Aire. Promiscuously expressed genes tend to colocalize in clusters in the genome. Analysis of a particular gene locus revealed expression of clustered genes to be contiguous within such a cluster and to encompass both Aire-dependent and –independent genes. A role for epigenetic regulation is furthermore implied by the selective loss of imprinting of the insulin-like growth factor 2 gene in mTECs. Our data document a remarkable cellular and molecular specialization of the thymic stroma in order to mimic the transcriptome of multiple peripheral tissues and, thus, maximize the scope of central self-tolerance.


PLOS Genetics | 2006

CpG Island Methylation in Human Lymphocytes Is Highly Correlated with DNA Sequence, Repeats, and Predicted DNA Structure

Christoph Bock; Martina Paulsen; Sascha Tierling; Thomas Mikeska; Thomas Lengauer; Jörn Walter

CpG island methylation plays an important role in epigenetic gene control during mammalian development and is frequently altered in disease situations such as cancer. The majority of CpG islands is normally unmethylated, but a sizeable fraction is prone to become methylated in various cell types and pathological situations. The goal of this study is to show that a computational epigenetics approach can discriminate between CpG islands that are prone to methylation from those that remain unmethylated. We develop a bioinformatics scoring and prediction method on the basis of a set of 1,184 DNA attributes, which refer to sequence, repeats, predicted structure, CpG islands, genes, predicted binding sites, conservation, and single nucleotide polymorphisms. These attributes are scored on 132 CpG islands across the entire human Chromosome 21, whose methylation status was previously established for normal human lymphocytes. Our results show that three groups of DNA attributes, namely certain sequence patterns, specific DNA repeats, and a particular DNA structure, are each highly correlated with CpG island methylation (correlation coefficients of 0.64, 0.66, and 0.49, respectively). We predicted, and subsequently experimentally examined 12 CpG islands from human Chromosome 21 with unknown methylation patterns and found more than 90% of our predictions to be correct. In addition, we applied our prediction method to analyzing Human Epigenome Project methylation data on human Chromosome 6 and again observed high prediction accuracy. In summary, our results suggest that DNA composition of CpG islands (sequence, repeats, and structure) plays a significant role in predisposing CpG islands for DNA methylation. This finding may have a strong impact on our understanding of changes in CpG island methylation in development and disease.


PLOS Genetics | 2009

DNA methylation analysis of chromosome 21 gene promoters at single base pair and single allele resolution.

Yingying Zhang; Christian Rohde; Sascha Tierling; Tomasz P. Jurkowski; Christoph Bock; Diana Santacruz; Sergey Ragozin; Richard Reinhardt; Marco Groth; Jörn Walter; Albert Jeltsch

Differential DNA methylation is an essential epigenetic signal for gene regulation, development, and disease processes. We mapped DNA methylation patterns of 190 gene promoter regions on chromosome 21 using bisulfite conversion and subclone sequencing in five human cell types. A total of 28,626 subclones were sequenced at high accuracy using (long-read) Sanger sequencing resulting in the measurement of the DNA methylation state of 580427 CpG sites. Our results show that average DNA methylation levels are distributed bimodally with enrichment of highly methylated and unmethylated sequences, both for amplicons and individual subclones, which represent single alleles from individual cells. Within CpG-rich sequences, DNA methylation was found to be anti-correlated with CpG dinucleotide density and GC content, and methylated CpGs are more likely to be flanked by AT-rich sequences. We observed over-representation of CpG sites in distances of 9, 18, and 27 bps in highly methylated amplicons. However, DNA sequence alone is not sufficient to predict an amplicons DNA methylation status, since 43% of all amplicons are differentially methylated between the cell types studied here. DNA methylation in promoter regions is strongly correlated with the absence of gene expression and low levels of activating epigenetic marks like H3K4 methylation and H3K9 and K14 acetylation. Utilizing the single base pair and single allele resolution of our data, we found that i) amplicons from different parts of a CpG island frequently differ in their DNA methylation level, ii) methylation levels of individual cells in one tissue are very similar, and iii) methylation patterns follow a relaxed site-specific distribution. Furthermore, iv) we identified three cases of allele-specific DNA methylation on chromosome 21. Our data shed new light on the nature of methylation patterns in human cells, the sequence dependence of DNA methylation, and its function as epigenetic signal in gene regulation. Further, we illustrate genotype–epigenotype interactions by showing novel examples of allele-specific methylation.


Journal of Medical Genetics | 2010

Assisted reproductive technologies do not enhance the variability of DNA methylation imprints in human

Sascha Tierling; N Y Souren; Jasmin Gries; Christina LoPorto; Marco Groth; Pavlo Lutsik; Heidemarie Neitzel; Isabelle Utz-Billing; Gabriele Gillessen-Kaesbach; Heribert Kentenich; Georg Griesinger; Karl Sperling; Eberhard Schwinger; Jörn Walter

Background Assisted reproductive technologies (ART) such as in vitro fertilisation (IVF) and intracytoplasmic sperm injection (ICSI) are believed to destabilise genomic imprints. An increased frequency of Beckwith–Wiedemann syndrome in children born after ART has been reported. Other, mostly epidemiological, studies argue against this finding. Objective To examine the effect of ART on the stability of DNA methylation imprints, DNA was extracted from maternal peripheral blood (MPB), umbilical cord blood (UCB) and amnion/chorion tissue (ACT) of 185 phenotypically normal children (77 ICSI, 35 IVF, and 73 spontaneous conceptions). Using bisulfite based technologies 10 differentially methylated regions (DMRs) were analysed, including KvDMR1, H19, SNRPN, MEST, GRB10, DLK1/MEG3 IG-DMR, GNAS NESP55, GNAS NESPas, GNAS XL-alpha-s and GNAS Exon1A. Results Methylation indices (MI) do not reveal any significant differences at nine DMRs among the conception groups in neither MPB, UCB nor in ACT. The only slightly variable DMR was that of MEST. Here the mean MI was higher in UCB and MPB of IVF cases (mean MI±SD: 0.41±0.03 (UCB) and 0.40±0.03 (MPB)) compared to the ICSI (0.38±0.03, p=0.003 (UCB); 0.37±0.04, p=0.0007 (MPB)) or spontaneous cases (0.38±0.03, p=0.003 (UCB); 0.38±0.04, p=0.02 (MPB)). Weak but suggestive correlations between DMRs were, however, found between MPB, UCB and ACT. Conclusion This study supports the notion that children conceived by ART do not show a higher degree of imprint variability and hence do not have an a priori higher risk for imprinting disorders.


Methods of Molecular Biology | 2009

DNA Methylation Analysis by Bisulfite Conversion, Cloning, and Sequencing of Individual Clones

Yingying Zhang; Christian Rohde; Sascha Tierling; Heinrich Stamerjohanns; Richard Reinhardt; Jörn Walter; Albert Jeltsch

DNA methylation is an essential epigenetic modification in the human genome. For the investigation of DNA methylation patterns, bisulfite conversion and DNA sequencing is a method of choice, because it provides detailed information on the methylation pattern of individual DNA molecules at single CG site resolution. The method is based on the deamination of cytosine residues to uracils in the presence of NaOH and sodium bisulfite. Since methylcytosine is not converted under these conditions, the original methylation state of the DNA can be analyzed by sequencing of the converted DNA. After the conversion reaction, the DNA sequence under investigation is amplified by polymerase chain reaction (PCR) with primers specific for one strand of the bisulfite-converted DNA. The PCR product is cloned and individual clones are sequenced. Here, we describe an advanced protocol for bisulfite conversion, protocols for cloning, and tools for primer design (Methprimer, Bisearch). In addition, we present tools for the web display of primary data and data analysis (BiQ Analyzer, BDPC) and describe the setup of a sequencing and analysis pipeline for medium to high throughput.


Neuromolecular Medicine | 2011

Next-generation sequencing reveals regional differences of the α-synuclein methylation state independent of Lewy body disease.

L. de Boni; Sascha Tierling; Sigrun Roeber; Jörn Walter; Armin Giese; Hans A. Kretzschmar

The α-synuclein gene (SNCA) plays a major role in the aetiology of Lewy body disease (LBD) including Parkinson’s disease (PD). Point mutations and genetic alterations causing elevated gene expression are causally linked to familial PD. To what extent epigenetic changes play a role in the regulation of α-synuclein expression and may contribute to the aetiology of sporadic LBD is a matter of debate. We analysed the methylation state of the promoter region and a CpG-rich region of intron 1 of α-synuclein in several brain regions in sporadic LBD and controls using 454 GS-FLX-based high-resolution bisulphite sequencing. Our results indicate that there are significant differences in the level of methylation between different brain areas. The overall methylation levels in the promoter and intron 1 of α-synuclein are rather low in controls and—in contrast to previously reported findings—are not significantly different from LBD. However, single CpG analysis revealed significant hyper- and hypomethylation at different positions in various brain regions and LBD stages. A slight overall increase in methylation related to LBD patients’ age was detected.


PLOS Genetics | 2013

DNA–Methylome Analysis of Mouse Intestinal Adenoma Identifies a Tumour-Specific Signature That Is Partly Conserved in Human Colon Cancer

Christina Grimm; Lukas Chavez; Mireia Vilardell; Alexandra L. Farrall; Sascha Tierling; Julia W. Böhm; Phillip Grote; Matthias Lienhard; Jörn Dietrich; Bernd Timmermann; Jörn Walter; Michal R. Schweiger; Hans Lehrach; Ralf Herwig; Bernhard G. Herrmann; Markus Morkel

Aberrant CpG methylation is a universal epigenetic trait of cancer cell genomes. However, human cancer samples or cell lines preclude the investigation of epigenetic changes occurring early during tumour development. Here, we have used MeDIP-seq to analyse the DNA methylome of APCMin adenoma as a model for intestinal cancer initiation, and we present a list of more than 13,000 recurring differentially methylated regions (DMRs) characterizing intestinal adenoma of the mouse. We show that Polycomb Repressive Complex (PRC) targets are strongly enriched among hypermethylated DMRs, and several PRC2 components and DNA methyltransferases were up-regulated in adenoma. We further demonstrate by bisulfite pyrosequencing of purified cell populations that the DMR signature arises de novo in adenoma cells rather than by expansion of a pre-existing pattern in intestinal stem cells or undifferentiated crypt cells. We found that epigenetic silencing of tumour suppressors, which occurs frequently in colon cancer, was rare in adenoma. Quite strikingly, we identified a core set of DMRs, which is conserved between mouse adenoma and human colon cancer, thus possibly revealing a global panel of epigenetically modified genes for intestinal tumours. Our data allow a distinction between early conserved epigenetic alterations occurring in intestinal adenoma and late stochastic events promoting colon cancer progression, and may facilitate the selection of more specific clinical epigenetic biomarkers.


Genome Biology | 2013

Adult monozygotic twins discordant for intra-uterine growth have indistinguishable genome-wide DNA methylation profiles

N Y Souren; Pavlo Lutsik; Gilles Gasparoni; Sascha Tierling; Jasmin Gries; Matthias Riemenschneider; Jean-Pierre Fryns; Catherine Derom; Maurice P. Zeegers; Jörn Walter

BackgroundLow birth weight is associated with an increased adult metabolic disease risk. It is widely discussed that poor intra-uterine conditions could induce long-lasting epigenetic modifications, leading to systemic changes in regulation of metabolic genes. To address this, we acquire genome-wide DNA methylation profiles from saliva DNA in a unique cohort of 17 monozygotic monochorionic female twins very discordant for birth weight. We examine if adverse prenatal growth conditions experienced by the smaller co-twins lead to long-lasting DNA methylation changes.ResultsOverall, co-twins show very similar genome-wide DNA methylation profiles. Since observed differences are almost exclusively caused by variable cellular composition, an original marker-based adjustment strategy was developed to eliminate such variation at affected CpGs. Among adjusted and unchanged CpGs 3,153 are differentially methylated between the heavy and light co-twins at nominal significance, of which 45 show sensible absolute mean β-value differences. Deep bisulfite sequencing of eight such loci reveals that differences remain in the range of technical variation, arguing against a reproducible biological effect. Analysis of methylation in repetitive elements using methylation-dependent primer extension assays also indicates no significant intra-pair differences.ConclusionsSevere intra-uterine growth differences observed within these monozygotic twins are not associated with long-lasting DNA methylation differences in cells composing saliva, detectable with up-to-date technologies. Additionally, our results indicate that uneven cell type composition can lead to spurious results and should be addressed in epigenomic studies.


Journal of Hepatology | 2011

OVEREXPRESSION OF THE IGF2-mRNA BINDING PROTEIN p62 IN TRANSGENIC MICE INDUCES A STEATOTIC PHENOTYPE

Elisabeth Tybl; Fu Dong Shi; Sonja M. Kessler; Sascha Tierling; Jörn Walter; Rainer M. Bohle; Stefan Wieland; Jianying Zhang; Eng M. Tan; Alexandra K. Kiemer

BACKGROUND & AIMS The insulin-like growth-factor 2 (IGF2) mRNA binding protein p62 is highly expressed in hepatocellular carcinoma tissue. Still, its potential role in liver disease is largely unknown. In this study, we investigated pathophysiological implications of p62 overexpression in mice. METHODS We generated mice overexpressing p62 under a LAP-promotor. mRNA expression levels and stability were examined by real-time RT-PCR. Allele-specific expression of Igf2 and H19 was assessed after crossing mice with SD7 animals. The Igf2 downstream mediators pAKT and PTEN were determined by Western blot. RESULTS Hepatic p62 overexpression neither induced inflammatory processes nor liver damage. However, 2.5week old transgenic animals displayed a steatotic phenotype and improved glucose tolerance. p62 overexpression induced the expression of the imprinted genes Igf2 and H19 and their transcriptional regulator Aire (autoimmune regulator). Neither monoallelic expression nor mRNA stability of Igf2 and H19 was affected. Investigating Igf2 downstream signalling pathways showed increased AKT activation and attenuated PTEN expression. CONCLUSIONS The induction of a steatotic phenotype implies that p62 plays a role in hepatic pathophysiology.


Genes & Development | 2012

Identification of a DNA methylation-independent imprinting control region at the Arabidopsis MEDEA locus

Heike J.P. Wöhrmann; Valeria Gagliardini; Michael T. Raissig; Wendelin Wehrle; Julia Arand; Anja Schmidt; Sascha Tierling; Damian R. Page; Hanspeter Schöb; Jörn Walter; Ueli Grossniklaus

Genomic imprinting is exclusive to mammals and seed plants and refers to parent-of-origin-dependent, differential transcription. As previously shown in mammals, studies in Arabidopsis have implicated DNA methylation as an important hallmark of imprinting. The current model suggests that maternally expressed imprinted genes, such as MEDEA (MEA), are activated by the DNA glycosylase DEMETER (DME), which removes DNA methylation established by the DNA methyltransferase MET1. We report the systematic functional dissection of the MEA cis-regulatory region, resulting in the identification of a 200-bp fragment that is necessary and sufficient to mediate MEA activation and imprinted expression, thus containing the imprinting control region (ICR). Notably, imprinted MEA expression mediated by this ICR is independent of DME and MET1, consistent with the lack of any significant DNA methylation in this region. This is the first example of an ICR without differential DNA methylation, suggesting that factors other than DME and MET1 are required for imprinting at the MEA locus.

Collaboration


Dive into the Sascha Tierling's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christoph Bock

Austrian Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge