Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sascha Trippe is active.

Publication


Featured researches published by Sascha Trippe.


The Astrophysical Journal | 2009

Monitoring stellar orbits around the Massive Black Hole in the Galactic Center

S. Gillessen; F. Eisenhauer; Sascha Trippe; Tal Alexander; R. Genzel; F. Martins; T. Ott

We present the results of 16 years of monitoring stellar orbits around the massive black hole in the center of the Milky Way, using high-resolution near-infrared techniques. This work refines our previous analysis mainly by greatly improving the definition of the coordinate system, which reaches a long-term astrometric accuracy of 300 μas, and by investigating in detail the individual systematic error contributions. The combination of a long-time baseline and the excellent astrometric accuracy of adaptive optics data allows us to determine orbits of 28 stars, including the star S2, which has completed a full revolution since our monitoring began. Our main results are: all stellar orbits are fit extremely well by a single-point-mass potential to within the astrometric uncertainties, which are now 6× better than in previous studies. The central object mass is , where the fractional statistical error of 1.5% is nearly independent from R 0, and the main uncertainty is due to the uncertainty in R 0. Our current best estimate for the distance to the Galactic center is R 0 = 8.33 ± 0.35 kpc. The dominant errors in this value are systematic. The mass scales with distance as (3.95 ± 0.06) × 106(R 0/8 kpc)2.19 M ☉. The orientations of orbital angular momenta for stars in the central arcsecond are random. We identify six of the stars with orbital solutions as late-type stars, and six early-type stars as members of the clockwise-rotating disk system, as was previously proposed. We constrain the extended dark mass enclosed between the pericenter and apocenter of S2 at less than 0.066, at the 99% confidence level, of the mass of Sgr A*. This is two orders of magnitudes larger than what one would expect from other theoretical and observational estimates.


The Astrophysical Journal | 2005

SINFONI in the galactic center: young stars and infrared flares in the central light-month

F. Eisenhauer; R. Genzel; Tal Alexander; R. Abuter; T. Paumard; T. Ott; Andrea M. Gilbert; S. Gillessen; M. Horrobin; Sascha Trippe; Henri Bonnet; Christophe Dumas; Norbert Hubin; A. Kaufer; Markus Kissler-Patig; Guy J. Monnet; S. Ströbele; T. Szeifert; A. Eckart; R. Schödel; Shay Zucker

We report 75 milli-arcsec resolution, near-IR imaging spectroscopy within the central 30 light days of the Galactic Center [...]. To a limiting magnitude of K~16, 9 of 10 stars in the central 0.4 arcsec, and 13 of 17 stars out to 0.7 arcsec from the central black hole have spectral properties of B0-B9, main sequence stars. [...] all brighter early type stars have normal rotation velocities, similar to solar neighborhood stars. We [...] derive improved 3d stellar orbits for six of these S-stars in the central 0.5 arcsec. Their orientations in space appear random. Their orbital planes are not co-aligned with those of the two disks of massive young stars 1-10 arcsec from SgrA*. We can thus exclude [...] that the S-stars as a group inhabit the inner regions of these disks. They also cannot have been located/formed in these disks [...]. [...] we conclude that the S-stars were most likely brought into the central light month by strong individual scattering events. The updated estimate of distance to the Galactic center from the S2 orbit fit is Ro = 7.62 +/- 0.32 kpc, resulting in a central mass value of 3.61 +/- 0.32 x 10^6 Msun. We happened to catch two smaller flaring events from SgrA* [...]. The 1.7-2.45 mum spectral energy distributions of these flares are fit by a featureless, red power law [...]. The observed spectral slope is in good agreement with synchrotron models in which the infrared emission comes from [...] radiative inefficient accretion flow in the central R~10 Rs region.


Astronomy and Astrophysics | 2006

The flare activity of Sagittarius A

A. Eckart; F. K. Baganoff; R. Schödel; Mark R. Morris; R. Genzel; G. C. Bower; D. P. Marrone; James M. Moran; T. Viehmann; Mark W. Bautz; W. N. Brandt; Gordon Garmire; T. Ott; Sascha Trippe; George R. Ricker; C. Straubmeier; D. A. Roberts; Farhad Yusef-Zadeh; Jun-Hui Zhao; Ramprasad Rao

Context. We report new simultaneous near-infrared/sub-millimeter/X-ray observations of the Sgr A* counterpart associated with the massive 3−4 × 10 6 Mblack hole at the Galactic Center. Aims. We investigate the physical processes responsible for the variable emission from Sgr A*. Methods. The observations have been carried out using the NACO adaptive optics (AO) instrument at the European Southern Observatorys Very Large Telescopeand the ACIS-I instrument aboard the Chandra X-ray Observatory as well as the Submillimeter Array SMA �� on Mauna Kea, Hawaii, and the Very Large Array ��� in New Mexico. Results. We detected one moderately bright flare event in the X-ray domain and 5 events at infrared wavelengths. The X-ray flare had an excess 2−8 keV luminosity of about 33 × 10 33 erg/s. The duration of this flare was completely covered in the infrared and it was detected as a simultaneous NIR event with a time lag of ≤10 min. Simultaneous infrared/X-ray observations are available for 4 flares. All simultaneously covered flares, combined with the flare covered in 2003, indicate that the time-lag between the NIR and X-ray flare emission is very small and in agreement with a synchronous evolution. There are no simultaneous flare detections between the NIR/X-ray data and the VLA and SMA data. The excess flux densities detected in the radio and sub-millimeter domain may be linked with the flare activity observed at shorter wavelengths. Conclusions. We find that the flaring state can be explained with a synchrotron self-Compton (SSC) model involving up-scattered sub- millimeter photons from a compact source component. This model allows for NIR flux density contributions from both the synchrotron and SSC mechanisms. Indications for an exponential cutoff of the NIR/MIR synchrotron spectrum allow for a straightforward explanation of the variable and red spectral indices of NIR flares.


Astronomy and Astrophysics | 2006

Stellar and wind properties of massive stars in the central parsec of the Galaxy

F. Martins; R. Genzel; D. J. Hillier; F. Eisenhauer; T. Paumard; S. Gillessen; T. Ott; Sascha Trippe

We study the stellar and wind properties of massive stars in the central cluster of the Galaxy. We use non-LTE atmosphere models including winds and line-blanketing to fit their H and K band spectra obtained with the 3D spectrograph SINFONI on the VLT. We derive the main stellar (Teff, L, abundances, ionizing flux) and wind (mass loss rate, terminal velocity) properties. They are found to be similar to other galactic massive stars. We show that a direct evolutionary link between Ofpe/WN9, WN8 and WN/C stars exists. Using individual SEDs for each massive star, we construct the total spectral energy distribution of the cluster and use it to compute photoionization models. We show that the nebular properties of the central HII region are well reproduced. We conclude that, contrary to previous claims, standard stellar evolution and atmosphere models are well suited to explain the properties of the central cluster. Our results indicate that massive stars in the central cluster do not have a peculiar evolution as could be expected from their proximity to the supermassive black hole SgrA*.


Astronomy and Astrophysics | 2006

The flare activity of Sagittarius A* New coordinated mm to X-ray observations

A. Eckart; F. K. Baganoff; R. Schödel; Mark R. Morris; R. Genzel; Geoffrey C. Bower; D. P. Marrone; James M. Moran; T. Viehmann; Mark W. Bautz; W. N. Brandt; Gordon Garmire; T. Ott; Sascha Trippe; George R. Ricker; C. Straubmeier; D. A. Roberts; Farhad Yusef-Zadeh; Jun-Hui Zhao; Ramprasad Rao

Context. We report new simultaneous near-infrared/sub-millimeter/X-ray observations of the Sgr A* counterpart associated with the massive 3−4 × 10 6 Mblack hole at the Galactic Center. Aims. We investigate the physical processes responsible for the variable emission from Sgr A*. Methods. The observations have been carried out using the NACO adaptive optics (AO) instrument at the European Southern Observatorys Very Large Telescopeand the ACIS-I instrument aboard the Chandra X-ray Observatory as well as the Submillimeter Array SMA �� on Mauna Kea, Hawaii, and the Very Large Array ��� in New Mexico. Results. We detected one moderately bright flare event in the X-ray domain and 5 events at infrared wavelengths. The X-ray flare had an excess 2−8 keV luminosity of about 33 × 10 33 erg/s. The duration of this flare was completely covered in the infrared and it was detected as a simultaneous NIR event with a time lag of ≤10 min. Simultaneous infrared/X-ray observations are available for 4 flares. All simultaneously covered flares, combined with the flare covered in 2003, indicate that the time-lag between the NIR and X-ray flare emission is very small and in agreement with a synchronous evolution. There are no simultaneous flare detections between the NIR/X-ray data and the VLA and SMA data. The excess flux densities detected in the radio and sub-millimeter domain may be linked with the flare activity observed at shorter wavelengths. Conclusions. We find that the flaring state can be explained with a synchrotron self-Compton (SSC) model involving up-scattered sub- millimeter photons from a compact source component. This model allows for NIR flux density contributions from both the synchrotron and SSC mechanisms. Indications for an exponential cutoff of the NIR/MIR synchrotron spectrum allow for a straightforward explanation of the variable and red spectral indices of NIR flares.


The Astrophysical Journal | 2007

Evidence for a long‐standing top‐heavy initial mass function in the central parsec of the galaxy

H. Maness; F. Martins; Sascha Trippe; R. Genzel; James R. Graham; C. D. Sheehy; Maurizio Salaris; S. Gillessen; Tal Alexander; T. Paumard; T. Ott; R. Abuter; F. Eisenhauer

We classify 329 late-type giants within 1 pc of Sgr A*, using the adaptive optics integral field spectrometer SINFONI on the VLT. These observations represent the deepest spectroscopic data set so far obtained for the Galactic center, reaching a 50% completeness threshold at the approximate magnitude of the helium-burning red clump (KS ~ 15.5 mag). Combining our spectroscopic results with NaCo H and KS photometry, we construct an observed Hertzsprung-Russell diagram, which we quantitatively compare to theoretical distributions of various star formation histories of the inner Galaxy, using a χ2 analysis. Our best-fit model corresponds to continuous star formation over the last 12 Gyr with a top-heavy initial mass function (IMF). The similarity of this IMF to the IMF observed for the most recent epoch of star formation is intriguing and perhaps suggests a connection between recent star formation and the stars formed throughout the history of the Galactic center.


Astronomy and Astrophysics | 2008

Kinematics of the old stellar population at the Galactic centre

Sascha Trippe; S. Gillessen; Ortwin Gerhard; H. Bartko; T. K. Fritz; H. Maness; F. Eisenhauer; F. Martins; T. Ott; K. Dodds-Eden; R. Genzel

Aims. We aim at a detailed description of the kinematic properties of the old, (several Gyrs) late-type CO-absorption star population among the Galactic centre (GC) cluster stars. This cluster is composed of a central supermassive black hole (Sgr A*) and a selfgravitating system of stars. Understanding its kinematics thus offers the opportunity to understand the dynamical interaction between a central point mass and the surrounding stars in general, especially in view of understanding other galactic nuclei. Methods. We applied AO-assisted, near-infrared imaging and integral-field spectroscopy using the instruments NAOS/CONICA and SINFONI at the VLT. We obtained proper motions for 5445 stars, 3D velocities for 664 stars, and acceleration limits (in the sky plane) for 750 stars. Global kinematic properties were analysed using velocity and velocity dispersion distributions, phase-space maps, twopoint correlation functions, and the Jeans equation. Results. We detect for the first time significant cluster rotation in the sense of the general Galactic rotation in proper motions. Out of the 3D velocity dispersion, we derive an improved statistical parallax for the GC of R0 = 8.07 ± 0.32stat ± 0.13sys kpc. The distribution of 3D stellar speeds can be approximated by local Maxwellian distributions. Kinematic modelling provides deprojected 3D kinematic parameters, including the mass profile of the cluster. We find an upper limit of 4% for the amplitude of fluctuations in the phase-space distribution of the cluster stars compared to a uniform, spherical model cluster. Using upper limits on accelerations, we constrain the minimum line-of-sight distances from the plane of Sgr A* of five stars located within the innermost few (projected) arcsec. The stars within 0.7 �� radius from the star group IRS13E do not co-move with this group, making it unlikely that IRS13E is the core of a substantial star cluster. Overall, the GC late-type cluster is described well as a uniform, isotropic, rotating, dynamically relaxed, phase-mixed system.


The Astrophysical Journal | 2011

The Two States of Sgr A* in the Near-infrared: Bright Episodic Flares on Top of Low-level Continuous Variability

K. Dodds-Eden; S. Gillessen; T. K. Fritz; F. Eisenhauer; Sascha Trippe; R. Genzel; T. Ott; H. Bartko; O. Pfuhl; G. C. Bower; A. Goldwurm; D. Porquet; G. Trap; F. Yusef-Zadeh

In this paper we examine properties of the variable source Sgr A* in the near-infrared (NIR) using a very extensive Ks-band data set from NACO/VLT observations taken 2004 to 2009. We investigate the variability of Sgr A* with two different photometric methods and analyze its flux distribution. We find Sgr A* is continuously emitting and continuously variable in the near-infrared, with some variability occurring on timescales as long as weeks. The flux distribution can be described by a lognormal distribution at low intrinsic fluxes (. 5 mJy, dereddened with AKs = 2.5). The lognormal distribution has a median flux of �1.1 mJy, but above 5 mJy the flux distribution is significantly flatter (high flux events are more common) than expected for the extrapolation of the lognormal distribution to high fluxes. We make a general identification of the low level emission above 5 mJy as flaring emission and of the low level emission as the quiescent state. We also report here the brightest Ks-band flare ever observed (from August 5th, 2008) which reached an intrinsic Ks-band flux of 27.5 mJy (mKs = 13.5). This flare was a factor 27 increase over the median flux of Sgr A*, close to double the brightness of the star S2, and 40% brighter than the next brightest flare ever observed from Sgr A*. Subject headings: accretion, accretion disks — black hole physics — infrared: general — Galaxy: center


Monthly Notices of the Royal Astronomical Society | 2010

What is limiting near‐infrared astrometry in the Galactic Centre?

T. K. Fritz; S. Gillessen; Sascha Trippe; Thomas Ott; H. Bartko; O. Pfuhl; K. Dodds-Eden; Richard Davies; F. Eisenhauer; R. Genzel

We systematically investigate the error sources for high-precision astrometry from adaptive optics (AO) based near-infrared imaging data. We focus on the application in the crowded stellar field in the Galactic Centre. We show that at the level of ≲ 100 μas a number of effects are limiting the accuracy. Most important are the imperfectly subtracted seeing haloes of neighbouring stars, residual image distortions and unrecognized confusion of the target source with fainter sources in the background. Further contributors to the error budget are the uncertainty in estimating the point-spread function, the signal-to-noise ratio induced statistical uncertainty, coordinate transformation errors, the chromaticity of refraction in Earths atmosphere, the post-AO differential tilt jitter and anisoplanatism. For stars as bright as m K = 14, residual image distortions limit the astrometry, for fainter stars the limitation is set by the seeing haloes of the surrounding stars. In order to improve the astrometry substantially at the current generation of telescopes, an AO system with high performance and weak seeing haloes over a relatively small field (r ≲ 3 arcsec) is suited best. Furthermore, techniques to estimate or reconstruct the seeing halo could be promising.


Monthly Notices of the Royal Astronomical Society | 2007

A polarized infrared flare from Sagittarius A* and the signatures of orbiting plasma hotspots

Sascha Trippe; T. Paumard; T. Ott; S. Gillessen; F. Eisenhauer; F. Martins; R. Genzel

In this article we summarize and discuss the infrared, radio and X-ray emission from the supermassive black hole in the Galactic Centre, SgrA*. We include new results from near-infrared polarimetric imaging observations obtained on 2006 May 31. In that night, a strong flare in K s band (2.08 μm) reaching top fluxes of ∼16 mJy could be observed. This flare was highly polarized (up to ∼40 per cent) and showed clear substructure on a time-scale of 15 min, including a swing in the polarization angle of about 70°. For the first time we were able to observe both polarized flux and short-time variability, with high significance in the same flare event. This result adds decisive information to the puzzle of the SgrA* activity. The observed polarization angle during the flare peak is the same as observed in two events in 2004 and 2005. Our observations strongly support the dynamical emission model of a decaying plasma hotspot orbiting SgrA* on a relativistic orbit. The observed polarization parameters and their variability with time might allow to constrain the orientation of accretion disc and spin axis with respect to the Galaxy.

Collaboration


Dive into the Sascha Trippe's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

F. Martins

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar

Sang-Sung Lee

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Jong-Ho Park

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Jae-Young Kim

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Do-Young Byun

Korea University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Sincheol Kang

Korea Astronomy and Space Science Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge