Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sasha Singh is active.

Publication


Featured researches published by Sasha Singh.


Development | 2004

Overlapping and non-redundant functions of the Arabidopsis auxin response factors MONOPTEROS and NONPHOTOTROPIC HYPOCOTYL 4.

Christian S. Hardtke; Wenzislava Ckurshumova; Danielle Vidaurre; Sasha Singh; George Stamatiou; Shiv B. Tiwari; Gretchen Hagen; Tom J. Guilfoyle; Thomas Berleth

Transcription factors of the auxin response factor (ARF) family have been implicated in auxin-dependent gene regulation, but little is known about the functions of individual ARFs in plants. Here, interaction assays, expression studies and combinations of multiple loss- and gain-of-function mutants were used to assess the roles of two ARFs, NONPHOTOTROPIC HYPOCOTYL 4 (NPH4/ARF7) and MONOPTEROS (MP/ARF5), in Arabidopsis development. Both MP and NPH4 interact strongly and selectively with themselves and with each other, and are expressed in vastly overlapping domains. We show that the regulatory properties of both genes are far more related than suggested by their single mutant phenotypes. NPH4 and MP are capable of controlling both axis formation in the embryo and auxin-dependent cell expansion. Interaction of MP and NPH4 in Arabidopsis plants is indicated by their joint requirement in a number of auxin responses and by synergistic effects associated with the co-overexpression of both genes. Finally, we demonstrate antagonistic interaction between ARF and Aux/IAA gene functions in Arabidopsis development. Overexpression of MP suppresses numerous defects associated with a gain-of-function mutation in BODENLOS (BDL)/IAA12. Together these results provide evidence for the biological relevance of ARF-ARF and ARF-Aux/IAA interaction in Arabidopsis plants and demonstrate that an individual ARF can act in both invariantly programmed pattern formation as well as in conditional responses to external signals.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Interaction of survival of motor neuron (SMN) and HuD proteins with mRNA cpg15 rescues motor neuron axonal deficits

Bikem Akten; Min Jeong Kye; Le T. Hao; Mary H. Wertz; Sasha Singh; Duyu Nie; Jia Huang; Tanuja T. Merianda; Jeffery L. Twiss; Christine E. Beattie; Judith A. Steen; Mustafa Sahin

Spinal muscular atrophy (SMA), caused by the deletion of the SMN1 gene, is the leading genetic cause of infant mortality. SMN protein is present at high levels in both axons and growth cones, and loss of its function disrupts axonal extension and pathfinding. SMN is known to associate with the RNA-binding protein hnRNP-R, and together they are responsible for the transport and/or local translation of β-actin mRNA in the growth cones of motor neurons. However, the full complement of SMN-interacting proteins in neurons remains unknown. Here we used mass spectrometry to identify HuD as a novel neuronal SMN-interacting partner. HuD is a neuron-specific RNA-binding protein that interacts with mRNAs, including candidate plasticity-related gene 15 (cpg15). We show that SMN and HuD form a complex in spinal motor axons, and that both interact with cpg15 mRNA in neurons. CPG15 is highly expressed in the developing ventral spinal cord and can promote motor axon branching and neuromuscular synapse formation, suggesting a crucial role in the development of motor axons and neuromuscular junctions. Cpg15 mRNA previously has been shown to localize into axonal processes. Here we show that SMN deficiency reduces cpg15 mRNA levels in neurons, and, more importantly, cpg15 overexpression partially rescues the SMN-deficiency phenotype in zebrafish. Our results provide insight into the function of SMN protein in axons and also identify potential targets for the study of mechanisms that lead to the SMA pathology and related neuromuscular diseases.


Journal of Proteome Research | 2009

FLEXIQuant: A novel tool for the absolute quantification of proteins, and the simultaneous identification and quantification of potentially modified peptides

Sasha Singh; Michael Springer; Judith A. Steen; Marc W. Kirschner; Hanno Steen

Measurements of protein abundance and quantitative assessment of multiple post-translational modifications (PTMs) within a single protein are increasingly used to understand the control of protein activity, particularly in metazoan cells. General methods of wide applicability and precision/accuracy for quantitative estimation of protein post-translational regulation are lacking. Protein mass spectrometry has evolved from a high-throughput qualitative technique to a potentially general quantitative tool, but there are still serious limitations in dynamic range and coverage. To address some of these limitations, we introduce a novel MS-based quantitative strategy, FLEXIQuant, (Full-Length Expressed Stable Isotope-labeled Proteins for Quantification), which can track changes in relative peptide abundances as a function of PTM, and determine absolute quantity of a protein from its lysate. We examined two subunits of the anaphase-promoting complex, CDC27 and APC5, as a test of our ability to monitor quantitatively, the PTM status of several peptides over time. We find evidence of differential regulation at different sites, a phenomenon we believe will be very widespread. FLEXIQuant proved itself to be capable of serving as a general quantitative tool.


Journal of Clinical Investigation | 2016

Sortilin mediates vascular calcification via its recruitment into extracellular vesicles

Claudia Goettsch; Joshua D. Hutcheson; Masanori Aikawa; Hiroshi Iwata; Tan Pham; Anders Nykjaer; Mads Kjolby; Maximillian A. Rogers; Thomas Michel; Manabu Shibasaki; Sumihiko Hagita; Rafael Kramann; Daniel J. Rader; Peter Libby; Sasha Singh; Elena Aikawa

Vascular calcification is a common feature of major cardiovascular diseases. Extracellular vesicles participate in the formation of microcalcifications that are implicated in atherosclerotic plaque rupture; however, the mechanisms that regulate formation of calcifying extracellular vesicles remain obscure. Here, we have demonstrated that sortilin is a key regulator of smooth muscle cell (SMC) calcification via its recruitment to extracellular vesicles. Sortilin localized to calcifying vessels in human and mouse atheromata and participated in formation of microcalcifications in SMC culture. Sortilin regulated the loading of the calcification protein tissue nonspecific alkaline phosphatase (TNAP) into extracellular vesicles, thereby conferring its calcification potential. Furthermore, SMC calcification required Rab11-dependent trafficking and FAM20C/casein kinase 2-dependent C-terminal phosphorylation of sortilin. In a murine model, Sort1-deficiency reduced arterial calcification but did not affect bone mineralization. Additionally, transfer of sortilin-deficient BM cells to irradiated atherosclerotic mice did not affect vascular calcification, indicating a primary role of SMC-derived sortilin. Together, the results of this study identify sortilin phosphorylation as a potential therapeutic target for ectopic calcification/microcalcification and may clarify the mechanism that underlies the genetic association between the SORT1 gene locus and coronary artery calcification.


Biochemistry | 2006

Structure of Arabidopsis dehydroquinate dehydratase-shikimate dehydrogenase and implications for metabolic channeling in the shikimate pathway.

Sasha Singh; Dinesh Christendat

The bifunctional enzyme dehydroquinate dehydratase-shikimate dehydrogenase (DHQ-SDH) catalyzes the dehydration of dehydroquinate to dehydroshikimate and the reduction of dehydroshikimate to shikimate in the shikimate pathway. We report the first crystal structure of Arabidopsis DHQ-SDH with shikimate bound at the SDH site and tartrate at the DHQ site. The interactions observed in the DHQ-tartrate complex reveal a conserved mode for substrate binding between the plant and microbial DHQ dehydratase family of enzymes. The SDH-shikimate complex provides the first direct evidence of the role of active site residues in the catalytic mechanism. Site-directed mutagenesis and mechanistic analysis revealed that Asp 423 and Lys 385 are key catalytic groups and Ser 336 is a key binding group. The arrangement of the two functional domains reveals that the control of metabolic flux through the shikimate pathway is achieved by increasing the effective concentration of dehydroshikimate through the proximity of the two sites.


Journal of Biological Chemistry | 2005

Crystal structure of a novel shikimate dehydrogenase from haemophilus influenzae.

Sasha Singh; Sergey Korolev; Olga Koroleva; Thomas Zarembinski; Frank R. Collart; Andrzej Joachimiak; Dinesh Christendat

To date two classes of shikimate dehydrogenases have been identified and characterized, YdiB and AroE. YdiB is a bifunctional enzyme that catalyzes the reversible reductions of dehydroquinate to quinate and dehydroshikimate to shikimate in the presence of either NADH or NADPH. In contrast, AroE catalyzes the reversible reduction of dehydroshikimate to shikimate in the presence of NADPH. Here we report the crystal structure and biochemical characterization of HI0607, a novel class of shikimate dehydrogenase annotated as shikimate dehydrogenase-like. The kinetic properties of HI0607 are remarkably different from those of AroE and YdiB. In comparison with YdiB, HI0607 catalyzes the oxidation of shikimate but not quinate. The turnover rate for the oxidation of shikimate is ∼1000-fold lower compared with that of AroE. Phylogenetic analysis reveals three independent clusters representing three classes of shikimate dehydrogenases, namely AroE, YdiB, and this newly characterized shikimate dehydrogenase-like protein. In addition, mutagenesis studies of two invariant residues, Asp-103 and Lys-67, indicate that they are important catalytic groups that may function as a catalytic pair in the shikimate dehydrogenase reaction. This is the first study that describes the crystal structure as well as mutagenesis and mechanistic analysis of this new class of shikimate dehydrogenase.


The EMBO Journal | 2014

Co-regulation proteomics reveals substrates and mechanisms of APC/C-dependent degradation

Sasha Singh; Dominic Winter; Marc Kirchner; Ruchi Chauhan; Saima Ahmed; Nurhan Özlü; Amit Tzur; Judith A. Steen; Hanno Steen

Using multiplexed quantitative proteomics, we analyzed cell cycle‐dependent changes of the human proteome. We identified >4,400 proteins, each with a six‐point abundance profile across the cell cycle. Hypothesizing that proteins with similar abundance profiles are co‐regulated, we clustered the proteins with abundance profiles most similar to known Anaphase‐Promoting Complex/Cyclosome (APC/C) substrates to identify additional putative APC/C substrates. This protein profile similarity screening (PPSS) analysis resulted in a shortlist enriched in kinases and kinesins. Biochemical studies on the kinesins confirmed KIFC1, KIF18A, KIF2C, and KIF4A as APC/C substrates. Furthermore, we showed that the APC/CCDH1‐dependent degradation of KIFC1 regulates the bipolar spindle formation and proper cell division. A targeted quantitative proteomics experiment showed that KIFC1 degradation is modulated by a stabilizing CDK1‐dependent phosphorylation site within the degradation motif of KIFC1. The regulation of KIFC1 (de‐)phosphorylation and degradation provides insights into the fidelity and proper ordering of substrate degradation by the APC/C during mitosis.


Scientific Reports | 2016

Endophenotype Network Models: Common Core of Complex Diseases

Susan Dina Ghiassian; Jörg Menche; Daniel I. Chasman; Franco Giulianini; Rui-Sheng Wang; Piero Ricchiuto; Masanori Aikawa; Hiroshi Iwata; Christian P. Müller; Tania Zeller; Amitabh Sharma; Philipp S. Wild; Karl J. Lackner; Sasha Singh; Paul M. Ridker; Stefan Blankenberg; Albert-László Barabási; Joseph Loscalzo

Historically, human diseases have been differentiated and categorized based on the organ system in which they primarily manifest. Recently, an alternative view is emerging that emphasizes that different diseases often have common underlying mechanisms and shared intermediate pathophenotypes, or endo(pheno)types. Within this framework, a specific disease’s expression is a consequence of the interplay between the relevant endophenotypes and their local, organ-based environment. Important examples of such endophenotypes are inflammation, fibrosis, and thrombosis and their essential roles in many developing diseases. In this study, we construct endophenotype network models and explore their relation to different diseases in general and to cardiovascular diseases in particular. We identify the local neighborhoods (module) within the interconnected map of molecular components, i.e., the subnetworks of the human interactome that represent the inflammasome, thrombosome, and fibrosome. We find that these neighborhoods are highly overlapping and significantly enriched with disease-associated genes. In particular they are also enriched with differentially expressed genes linked to cardiovascular disease (risk). Finally, using proteomic data, we explore how macrophage activation contributes to our understanding of inflammatory processes and responses. The results of our analysis show that inflammatory responses initiate from within the cross-talk of the three identified endophenotypic modules.


Journal of Biological Chemistry | 2006

Crystal Structure of Prephenate Dehydrogenase from Aquifex aeolicus INSIGHTS INTO THE CATALYTIC MECHANISM

Warren Sun; Sasha Singh; Rongguang Zhang; Joanne L. Turnbull; Dinesh Christendat

The enzyme prephenate dehydrogenase catalyzes the oxidative decarboxylation of prephenate to 4-hydroxyphenylpyruvate for the biosynthesis of tyrosine. Prephenate dehydrogenases exist as either monofunctional or bifunctional enzymes. The bifunctional enzymes are diverse, since the prephenate dehydrogenase domain is associated with other enzymes, such as chorismate mutase and 3-phosphoskimate 1-carboxyvinyltransferase. We report the first crystal structure of a monofunctional prephenate dehydrogenase enzyme from the hyper-thermophile Aquifex aeolicus in complex with NAD+. This protein consists of two structural domains, a modified nucleotide-binding domain and a novel helical prephenate binding domain. The active site of prephenate dehydrogenase is formed at the domain interface and is shared between the subunits of the dimer. We infer from the structure that access to the active site is regulated via a gated mechanism, which is modulated by an ionic network involving a conserved arginine, Arg250. In addition, the crystal structure reveals for the first time the positions of a number of key catalytic residues and the identity of other active site residues that may participate in the reaction mechanism; these residues include Ser126 and Lys246 and the catalytic histidine, His147. Analysis of the structure further reveals that two secondary structure elements, β3 and β7, are missing in the prephenate dehydrogenase domain of the bifunctional chorismate mutase-prephenate dehydrogenase enzymes. This observation suggests that the two functional domains of chorismate mutase-prephenate dehydrogenase are interdependent and explains why these domains cannot be separated.


American Journal of Physiology-endocrinology and Metabolism | 2015

New CETP Inhibitor K-312 Reduces PCSK9 Expression: A Potential Effect on LDL Cholesterol Metabolism

Katsutoshi Miyosawa; Yuichiro Watanabe; Kentaro Murakami; Takeshi Murakami; Haruki Shibata; Masaya Iwashita; Hiroyuki Yamazaki; Koichi Yamazaki; Tadaaki Ohgiya; Kimiyuki Shibuya; Ken Mizuno; Sohei Tanabe; Sasha Singh; Masanori Aikawa

Despite significant reduction of cardiovascular events by statin treatment, substantial residual risk persists, driving emerging needs for the development of new therapies. We identified a novel cholesteryl ester transfer protein (CETP) inhibitor, K-312, that raises HDL and lowers LDL cholesterol levels in animals. K-312 also suppresses hepatocyte expression of proprotein convertase subtilisin/kexin 9 (PCSK9), a molecule that increases LDL cholesterol. We explored the underlying mechanism for the reduction of PCSK9 expression by K-312. K-312 inhibited in vitro human plasma CETP activity (IC50; 0.06 μM). Administration of K-312 to cholesterol-fed New Zealand White rabbits for 18 wk raised HDL cholesterol, decreased LDL cholesterol, and attenuated aortic atherosclerosis. Our search for additional beneficial characteristics of this compound revealed that K-312 decreases PCSK9 expression in human primary hepatocytes and in the human hepatoma cell line HepG2. siRNA silencing of CETP in HepG2 did not compromise the suppression of PCSK9 by K-312, suggesting a mechanism independent of CETP. In HepG2 cells, K-312 treatment decreased the active forms of sterol regulatory element-binding proteins (SREBP-1 and -2) that regulate promoter activity of PCSK9. Chromatin immunoprecipitation assays demonstrated that K-312 decreased the occupancy of SREBP-1 and SREBP-2 on the sterol regulatory element of the PCSK9 promoter. PCSK9 protein levels decreased by K-312 treatment in the circulating blood of cholesterol-fed rabbits, as determined by two independent mass spectrometry approaches, including the recently developed, highly sensitive parallel reaction monitoring method. New CETP inhibitor K-312 decreases LDL cholesterol and PCSK9 levels, serving as a new therapy for dyslipidemia and cardiovascular disease.

Collaboration


Dive into the Sasha Singh's collaboration.

Top Co-Authors

Avatar

Masanori Aikawa

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Elena Aikawa

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Claudia Goettsch

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Hiroshi Iwata

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Joshua D. Hutcheson

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Piero Ricchiuto

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Hanno Steen

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Natalia Maldonado

City University of New York

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge