Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Saskia F. Heeringa is active.

Publication


Featured researches published by Saskia F. Heeringa.


Journal of Clinical Investigation | 2011

COQ6 mutations in human patients produce nephrotic syndrome with sensorineural deafness

Saskia F. Heeringa; Gil Chernin; Moumita Chaki; Weibin Zhou; Alexis Sloan; Ji Z; Letian X. Xie; Leonardo Salviati; Toby W. Hurd; Vega-Warner; Killen Pd; Raphael Y; Shazia Ashraf; Bugsu Ovunc; Dominik S. Schoeb; Heather M. McLaughlin; Rannar Airik; Christopher N. Vlangos; Rasheed Gbadegesin; Bernward Hinkes; Pawaree Saisawat; Eva Trevisson; Mara Doimo; Alberto Casarin; Pertegato; Giorgi G; Holger Prokisch; Agnès Rötig; Gudrun Nürnberg; Christian Becker

Steroid-resistant nephrotic syndrome (SRNS) is a frequent cause of end-stage renal failure. Identification of single-gene causes of SRNS has generated some insights into its pathogenesis; however, additional genes and disease mechanisms remain obscure, and SRNS continues to be treatment refractory. Here we have identified 6 different mutations in coenzyme Q10 biosynthesis monooxygenase 6 (COQ6) in 13 individuals from 7 families by homozygosity mapping. Each mutation was linked to early-onset SRNS with sensorineural deafness. The deleterious effects of these human COQ6 mutations were validated by their lack of complementation in coq6-deficient yeast. Furthermore, knockdown of Coq6 in podocyte cell lines and coq6 in zebrafish embryos caused apoptosis that was partially reversed by coenzyme Q10 treatment. In rats, COQ6 was located within cell processes and the Golgi apparatus of renal glomerular podocytes and in stria vascularis cells of the inner ear, consistent with an oto-renal disease phenotype. These data suggest that coenzyme Q10-related forms of SRNS and hearing loss can be molecularly identified and potentially treated.


PLOS Genetics | 2009

A Systematic Approach to Mapping Recessive Disease Genes in Individuals from Outbred Populations

Friedhelm Hildebrandt; Saskia F. Heeringa; Franz Rüschendorf; Massimo Attanasio; Gudrun Nürnberg; Christian Becker; Dominik Seelow; Norbert Huebner; Gil Chernin; Christopher N. Vlangos; Weibin Zhou; John F. O'Toole; Bethan E. Hoskins; Matthias Wolf; Bernward Hinkes; Hassan Chaib; Shazia Ashraf; Dominik S. Schoeb; Bugsu Ovunc; Susan J. Allen; Virginia Vega-Warner; Eric Wise; Heather M. Harville; Robert H. Lyons; Joseph Washburn; James W. MacDonald; Peter Nürnberg; Edgar A. Otto

The identification of recessive disease-causing genes by homozygosity mapping is often restricted by lack of suitable consanguineous families. To overcome these limitations, we apply homozygosity mapping to single affected individuals from outbred populations. In 72 individuals of 54 kindred ascertained worldwide with known homozygous mutations in 13 different recessive disease genes, we performed total genome homozygosity mapping using 250,000 SNP arrays. Likelihood ratio Z-scores (ZLR) were plotted across the genome to detect ZLR peaks that reflect segments of homozygosity by descent, which may harbor the mutated gene. In 93% of cases, the causative gene was positioned within a consistent ZLR peak of homozygosity. The number of peaks reflected the degree of inbreeding. We demonstrate that disease-causing homozygous mutations can be detected in single cases from outbred populations within a single ZLR peak of homozygosity as short as 2 Mb, containing an average of only 16 candidate genes. As many specialty clinics have access to cohorts of individuals from outbred populations, and as our approach will result in smaller genetic candidate regions, the new strategy of homozygosity mapping in single outbred individuals will strongly accelerate the discovery of novel recessive disease genes.


PLOS ONE | 2009

A Novel TRPC6 Mutation That Causes Childhood FSGS

Saskia F. Heeringa; Clemens C. Möller; Lixia Yue; Bernward Hinkes; Gil Chernin; Christopher N. Vlangos; Peter F. Hoyer; Jochen Reiser; Friedhelm Hildebrandt

Background TRPC6, encoding a member of the transient receptor potential (TRP) superfamily of ion channels, is a calcium-permeable cation channel, which mediates capacitive calcium entry into the cell. Until today, seven different mutations in TRPC6 have been identified as a cause of autosomal-dominant focal segmental glomerulosclerosis (FSGS) in adults. Methodology/Principal Findings Here we report a novel TRPC6 mutation that leads to early onset FSGS. We identified one family in whom disease segregated with a novel TRPC6 mutation (M132T), that also affected pediatric individuals as early as nine years of age. Twenty-one pedigrees compatible with an autosomal-dominant mode of inheritance and biopsy-proven FSGS were selected from a worldwide cohort of 550 families with steroid resistant nephrotic syndrome (SRNS). Whole cell current recordings of the mutant TRPC6 channel, compared to the wild-type channel, showed a 3 to 5-fold increase in the average out- and inward TRPC6 current amplitude. The mean inward calcium current of M132T was 10-fold larger than that of wild-type TRPC6. Interestingly, M132T mutants also lacked time-dependent inactivation. Generation of a novel double mutant M132T/N143S did not further augment TRPC6 channel activity. Conclusions In summary, our data shows that TRPC6 mediated FSGS can also be found in children. The large increase in channel currents and impaired channel inactivation caused by the M132T mutant leads to an aggressive phenotype that underlines the importance of calcium dose channeled through TRPC6.


Journal of The American Society of Nephrology | 2008

Specific Podocin Mutations Correlate with Age of Onset in Steroid-Resistant Nephrotic Syndrome

Bernward Hinkes; Christopher N. Vlangos; Saskia F. Heeringa; Bettina Mucha; Rasheed Gbadegesin; Jinhong Liu; Katrin Hasselbacher; Fatih Ozaltin; Friedhelm Hildebrandt

Mutations in the gene encoding podocin (NPHS2) cause autosomal recessive steroid-resistant nephrotic syndrome (SRNS). For addressing the possibility of a genotype-phenotype correlation between podocin mutations and age of onset, a worldwide cohort of 430 patients from 404 different families with SRNS were screened by direct sequencing. Recessive podocin mutations were present in 18.1% (73 of 404) of families with SRNS, and 69.9% of these mutations were nonsense, frameshift, or homozygous R138Q. Patients with these mutations manifested symptoms at a significantly earlier age (mean onset <1.75 years) than any other patient group, with or without podocin mutations, in this study (mean onset >4.17 yr). All but one patient affected by truncating or homozygous R138Q mutations developed SRNS before 6 yr of age. Patient groups with other recessive podocin mutations, with single heterozygous podocin mutations, with sequence variants, and with no podocin changes could not be distinguished from each other on the basis of age of onset. In conclusion, nephrotic syndrome in children with truncating or homozygous R138Q mutations manifests predominantly before 6 yr of life, and the onset of disease is significantly earlier than for any other podocin mutations. Because the age of onset can vary by several years among those with identical mutations, additional factors may modify the phenotype.


Clinical Journal of The American Society of Nephrology | 2010

Genotype/Phenotype Correlation in Nephrotic Syndrome Caused by WT1 Mutations

Gil Chernin; Virginia Vega-Warner; Dominik S. Schoeb; Saskia F. Heeringa; Bugsu Ovunc; Pawaree Saisawat; Roxana Cleper; Fatih Ozaltin; Friedhelm Hildebrandt; A. Arbeiter; A. Bakkalogulu; M. Benz; Detlef Bockenhauer; Radovan Bogdanovic; V. Chandha; Robert B. Ettenger; Cybele Ghossein; A. Goldberg; J. Heiliczer; D. Hooper; Bernd Hoppe; R. Jenkins; Bernard S. Kaplan; Markus J. Kemper; Martin Konrad; R. London; C. Mache; O. Mansoor; M. Mayr; Thomas J. Neuhaus

BACKGROUND AND OBJECTIVES The risk of developing Wilms tumor (WT) can be present or absent in patients with nephrotic syndrome (NS) caused by WT1 mutations. Here, the genotype/phenotype correlation regarding the outcome and risk for WT in 52 patients from 51 families with NS due to WT1 mutations is described. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS This study followed 19 patients with mutations in intron 9 splice donor site (KTS mutations), 27 patients with missense mutations, 4 patients with nonsense mutations, 1 patient with a splice site mutation in intron 8, and 1 patient with a deletion. RESULTS Twenty-four different WT1 mutations were detected. Sixteen of the 19 patients with KTS mutations were females. These patients had isolated NS if karyotype was 46,XX and Frasier syndrome if karyotype was 46,XY. Patients with KTS mutations presented at a significantly older age and with a slower progression toward chronic kidney disease (CKD) stage 5, compared with missense mutations. Patients with nonsense mutations presented initially with WT. Six patients with missense mutations developed WT after the diagnosis of NS (interval-range from NS onset to WT of 0.1 to 1.4 years). CONCLUSIONS (1) KTS mutations cause isolated NS with absence of WT in 46,XX females. (2) KTS mutations cause Frasier syndrome with gonadoblastoma risk in 46,XY phenotypic females. (3) KTS mutations cause NS with a slower progression when compared with missense mutations. (4) Missense mutations can occur with and without WT. (5) WT1 analysis is important in young patients with NS for early detection and tumor prophylaxis.


Nephrology Dialysis Transplantation | 2010

Nineteen novel NPHS1 mutations in a worldwide cohort of patients with congenital nephrotic syndrome (CNS)

Dominik S. Schoeb; Gil Chernin; Saskia F. Heeringa; Verena Matejas; Susanne Held; Virginia Vega-Warner; Detlef Bockenhauer; Christopher N. Vlangos; Khemchand N. Moorani; Thomas J. Neuhaus; Jameela A. Kari; James W. MacDonald; Pawaree Saisawat; Shazia Ashraf; Bugsu Ovunc; Martin Zenker; Friedhelm Hildebrandt

BACKGROUND Recessive mutations in the NPHS1 gene encoding nephrin account for approximately 40% of infants with congenital nephrotic syndrome (CNS). CNS is defined as steroid-resistant nephrotic syndrome (SRNS) within the first 90 days of life. Currently, more than 119 different mutations of NPHS1 have been published affecting most exons. METHODS We here performed mutational analysis of NPHS1 in a worldwide cohort of 67 children from 62 different families with CNS. RESULTS We found bi-allelic mutations in 36 of the 62 families (58%) confirming in a worldwide cohort that about one-half of CNS is caused by NPHS1 mutations. In 26 families, mutations were homozygous, and in 10, they were compound heterozygous. In an additional nine patients from eight families, only one heterozygous mutation was detected. We detected 37 different mutations. Nineteen of the 37 were novel mutations (approximately 51.4%), including 11 missense mutations, 4 splice-site mutations, 3 nonsense mutations and 1 small deletion. In an additional patient with later manifestation, we discovered two further novel mutations, including the first one affecting a glycosylation site of nephrin. CONCLUSIONS Our data hereby expand the spectrum of known mutations by 17.6%. Surprisingly, out of the two siblings with the homozygous novel mutation L587R in NPHS1, only one developed nephrotic syndrome before the age of 90 days, while the other one did not manifest until the age of 2 years. Both siblings also unexpectedly experienced an episode of partial remission upon steroid treatment.


Nephrology Dialysis Transplantation | 2008

Thirteen novel NPHS1 mutations in a large cohort of children with congenital nephrotic syndrome

Saskia F. Heeringa; Christopher N. Vlangos; Gil Chernin; Bernward Hinkes; Rasheed Gbadegesin; Jinhong Liu; Bethan E. Hoskins; Fatih Ozaltin; Friedhelm Hildebrandt

BACKGROUND Congenital nephrotic syndrome (CNS) is de- fined as nephrotic syndrome that manifests at birth or within the first 3 months of life. Most patients develop end-stage renal disease (ESRD) within 2 to 3 years of life. CNS of the Finnish-type (CNF) features a rather specific renal histology and is caused by recessive mutations in the NPHS1 gene encoding nephrin, a major structural protein of the glomerular slit-diaphragm. So far, more than 80 different mutations of NPHS1 causing CNF have been published. METHODS Here, we performed mutation analysis of NPHS1 by exon sequencing in a worldwide cohort of 32 children with CNS from 29 different families. RESULTS Sixteen of the 29 families (55%) were found to have two disease-causing alleles in NPHS1. Two additional patients had a single heterozygous mutation in NPHS1. Thirteen of a total of 20 different mutations detected were novel (65%). These were five missense mutations, one nonsense mutation, three deletions, one insertion and three splice-site mutations. CONCLUSION Our data expand the spectrum of known NPHS1 mutations by >15% in a worldwide cohort. Surprisingly, two patients with disease-causing mutations showed a relatively mild phenotype, as one patient had a partial remission with steroid treatment and one patient had normal renal function 1 year after the onset of disease. The increased number of known mutations will facilitate future studies into genotype/phenotype correlations.


Pediatric Nephrology | 2008

Low prevalence of NPHS2 mutations in African American children with steroid-resistant nephrotic syndrome

Gil Chernin; Saskia F. Heeringa; Rasheed Gbadegesin; Jinhong Liu; Bernward Hinkes; Christopher N. Vlangos; Virginia Vega-Warner; Friedhelm Hildebrandt

In African American (AA) children, focal segmental glomerulosclerosis (FSGS) is the leading cause of nephrotic syndrome (NS). It has been shown that AA children suffer from FSGS and steroid-resistant nephrotic syndrome (SRNS) at a higher frequency and with a more severe renal outcome in comparison with Caucasian children. Previous mutation analysis of large cohorts revealed that a high percentage of childhood SRNS is monogenic and that mutations in podocin (NPHS2) and Wilms’ tumor gene 1 (WT1) account for approximately 30% of SRNS in children. To test whether AA children with SRNS have a similar or a higher mutation rate, we performed mutation analysis of NPHS2 and WT1 in a cohort of AA children with SRNS. Direct sequencing was carried out for all exons of NPHS2 and for exons 8 and 9 of WT1. We ascertained 18 children of AA descent in whom renal biopsy findings showed FSGS in 13 patients (72%) and minimal-change disease in five patients (28%). In both NPHS2 and WT1, no disease-causing mutations were detected. Our data strongly suggest that in AA children with SRNS, the frequency of NPHS2 mutations is much lower than in large cohorts of pediatric SRNS patients in the general population. Knowledge of mutation rate of NPHS2 in different populations of SRNS patients facilitates the physician in planning a suitable genetic screening strategy for patients.


Kidney International | 2009

Specific podocin mutations determine age of onset of nephrotic syndrome all the way into adult life.

Friedhelm Hildebrandt; Saskia F. Heeringa

In steroid-resistant nephrotic syndrome (SRNS) Machuca et al. report that mutations of the recessive podocin gene cause adult-onset SRNS if the R229Q genetic variant occurs in a compound heterozygous state with another podocin mutation. Learning to tell apart the specific allele combinations of podocin mutations will be important for prognosis, genetic counseling in living related kidney donation, accurate etiologic classification within treatment studies, and the understanding of podocin function.


Pediatric Nephrology | 2010

Adequate use of allele frequencies in Hispanics—a problem elucidated in nephrotic syndrome

Gil Chernin; Saskia F. Heeringa; Virginia Vega-Warner; Dominik S. Schoeb; Peter Nürnberg; Friedhelm Hildebrandt

Previous studies in children with focal segmental glomerulosclerosis (FSGS) and nephrotic syndrome (NS) in the USA have revealed inter-ethnic differences in their clinical presentation and outcome. However, ethnicity was based on self-identification rather than on molecular genetic data. Here, we show that genetic heterogeneity exists in self-identified Hispanic (Spanish-American) patients with steroid-resistant nephrotic syndrome (SRNS), as patients may be either of Caucasian or Mesoamerican (Native-American) genetic background. Twenty-one self-identified Hispanic patients with SRNS from 18 families were initially evaluated for mutations in the NPHS2 and WT1 genes. All patients resided and were cared for in the USA. We performed a total genome search for linkage in all Hispanic patients using 250K single nucleotide polymorphism microarrays, comparing Caucasian with Mesoamerican allele frequencies to determine regions of homozygosity by descent and to establish the correct allele frequency for each family. We found that only ten families (56%) of the 18 self-identified Hispanic families are genetically of Mesoamerican descent, whereas the other eight families (44%) are of Caucasian descent. Due to the small number of families examined, we were unable to draw any conclusion on the prevalence of NPHS2 and WT1 in this ethnic group, but the data do suggest that self-identification of ethnicity in Hispanic-American patients is not an adequate basis for genetic studies, as this cohort may represent not only patients of Mesoamerican origin but also patients of Caucasian origin. Thus, one needs to critically review previous studies of FSGS/SRNS patients that involved Hispanic patients as a group. Future larger studies may employ a total genome search for linkage to test self-identified Hispanic ethnicity for true Mesoamerican versus Caucasian ethnicity in order to generate valid genetic data.

Collaboration


Dive into the Saskia F. Heeringa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gil Chernin

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shazia Ashraf

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Weibin Zhou

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric Wise

University of Michigan

View shared research outputs
Researchain Logo
Decentralizing Knowledge