Saskia van Hemert
Wageningen University and Research Centre
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Saskia van Hemert.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Peter van Baarlen; Freddy J. Troost; Saskia van Hemert; Cindy van der Meer; Willem M. de Vos; Philip J. de Groot; Guido Hooiveld; Robert-Jan M. Brummer; Michiel Kleerebezem
How do we acquire immune tolerance against food microorganisms and commensal bacteria that constitute the intestinal microbiota? We investigated this by stimulating the immune system of adults with commensal Lactobacillus plantarum bacteria. We studied the in vivo human responses to L. plantarum in a randomized double-blind placebo-controlled cross-over study. Healthy adults ingested preparations of living and heat-killed L. plantarum bacteria. Biopsies were taken from the intestinal duodenal mucosa and altered expression profiles were analyzed using whole-genome microarrays and by biological pathway reconstructions. Expression profiles of human mucosa displayed striking differences in modulation of NF-κB-dependent pathways, notably after consumption of living L. plantarum bacteria in different growth phases. Our in vivo study identified mucosal gene expression patterns and cellular pathways that correlated with the establishment of immune tolerance in healthy adults.
Brain Behavior and Immunity | 2015
Laura Steenbergen; Roberta Sellaro; Saskia van Hemert; Jos A. Bosch; Lorenza S. Colzato
BACKGROUND Recent insights into the role of the human microbiota in cognitive and affective functioning have led to the hypothesis that probiotic supplementation may act as an adjuvant strategy to ameliorate or prevent depression. OBJECTIVE Heightened cognitive reactivity to normal, transient changes in sad mood is an established marker of vulnerability to depression and is considered an important target for interventions. The present study aimed to test if a multispecies probiotic containing Bifidobacterium bifidum W23, Bifidobacterium lactis W52, Lactobacillus acidophilus W37, Lactobacillus brevis W63, Lactobacillus casei W56, Lactobacillus salivarius W24, and Lactococcus lactis (W19 and W58) may reduce cognitive reactivity in non-depressed individuals. DESIGN In a triple-blind, placebo-controlled, randomized, pre- and post-intervention assessment design, 20 healthy participants without current mood disorder received a 4-week probiotic food-supplement intervention with the multispecies probiotics, while 20 control participants received an inert placebo for the same period. In the pre- and post-intervention assessment, cognitive reactivity to sad mood was assessed using the revised Leiden index of depression sensitivity scale. RESULTS Compared to participants who received the placebo intervention, participants who received the 4-week multispecies probiotics intervention showed a significantly reduced overall cognitive reactivity to sad mood, which was largely accounted for by reduced rumination and aggressive thoughts. CONCLUSION These results provide the first evidence that the intake of probiotics may help reduce negative thoughts associated with sad mood. Probiotics supplementation warrants further research as a potential preventive strategy for depression.
PLOS ONE | 2010
Marjolein Meijerink; Saskia van Hemert; Nico Taverne; Michiel Wels; Paul de Vos; Peter A. Bron; H.F.J. Savelkoul; Jolanda van Bilsen; Michiel Kleerebezem; Jerry M. Wells
Background Probiotics can be used to stimulate or regulate epithelial and immune cells of the intestinal mucosa and generate beneficial mucosal immunomodulatory effects. Beneficial effects of specific strains of probiotics have been established in the treatment and prevention of various intestinal disorders, including allergic diseases and diarrhea. However, the precise molecular mechanisms and the strain-dependent factors involved are poorly understood. Methodology/Principal Findings In this study, we aimed to identify gene loci in the model probiotic organism Lactobacillus plantarum WCFS1 that modulate the immune response of host dendritic cells. The amounts of IL-10 and IL-12 secreted by dendritic cells (DCs) after stimulation with 42 individual L. plantarum strains were measured and correlated with the strain-specific genomic composition using comparative genome hybridisation and the Random Forest algorithm. This in silico “gene-trait matching” approach led to the identification of eight candidate genes in the L. plantarum genome that might modulate the DC cytokine response to L. plantarum. Six of these genes were involved in bacteriocin production or secretion, one encoded a bile salt hydrolase and one encoded a transcription regulator of which the exact function is unknown. Subsequently, gene deletions mutants were constructed in L. plantarum WCFS1 and compared to the wild-type strain in DC stimulation assays. All three bacteriocin mutants as well as the transcription regulator (lp_2991) had the predicted effect on cytokine production confirming their immunomodulatory effect on the DC response to L. plantarum. Transcriptome analysis and qPCR data showed that transcript level of gtcA3, which is predicted to be involved in glycosylation of cell wall teichoic acids, was substantially increased in the lp_2991 deletion mutant (44 and 29 fold respectively). Conclusion Comparative genome hybridization led to the identification of gene loci in L. plantarum WCFS1 that modulate the immune response of DCs.
BMC Microbiology | 2010
Saskia van Hemert; Marjolein Meijerink; Douwe Molenaar; Peter A. Bron; Paul de Vos; Michiel Kleerebezem; Jerry M. Wells; Maria L. Marco
BackgroundModulation of the immune system is one of the most plausible mechanisms underlying the beneficial effects of probiotic bacteria on human health. Presently, the specific probiotic cell products responsible for immunomodulation are largely unknown. In this study, the genetic and phenotypic diversity of strains of the Lactobacillus plantarum species were investigated to identify genes of L. plantarum with the potential to influence the amounts of cytokines interleukin 10 (IL-10) and IL-12 and the ratio of IL-10/IL-12 produced by peripheral blood mononuclear cells (PBMCs).ResultsA total of 42 Lactobacillus plantarum strains isolated from diverse environmental and human sources were evaluated for their capacity to stimulate cytokine production in PBMCs. The L. plantarum strains induced the secretion of the anti-inflammatory cytokine IL-10 over an average 14-fold range and secretion of the pro-inflammatory cytokine IL-12 over an average 16-fold range. Comparisons of the strain-specific cytokine responses of PBMCs to comparative genome hybridization profiles obtained with L. plantarum WCFS1 DNA microarrays (also termed gene-trait matching) resulted in the identification of 6 candidate genetic loci with immunomodulatory capacities. These loci included genes encoding an N-acetyl-glucosamine/galactosamine phosphotransferase system, the LamBDCA quorum sensing system, and components of the plantaricin (bacteriocin) biosynthesis and transport pathway. Deletion of these genes in L. plantarum WCFS1 resulted in growth phase-dependent changes in the PBMC IL-10 and IL-12 cytokine profiles compared with wild-type cells.ConclusionsThe altered PBMC cytokine profiles obtained with the L. plantarum WCFS1 mutants were in good agreement with the predictions made by gene-trait matching for the 42 L. plantarum strains. This study therefore resulted in the identification of genes present in certain strains of L. plantarum which might be responsible for the stimulation of anti- or pro-inflammatory immune responses in the gut.
Environmental Microbiology | 2009
Maria L. Marco; Theodorus H.F. Peters; Roger S. Bongers; Douwe Molenaar; Saskia van Hemert; Justin L. Sonnenburg; Jeffrey I. Gordon; Michiel Kleerebezem
Lactobacillus plantarum is a common inhabitant of mammalian gastrointestinal tracts. Strains of L. plantarum are also marketed as probiotics intended to confer beneficial health effects upon delivery to the human gut. To understand how L. plantarum adapts to its gut habitat, we used whole genome transcriptional profiling to characterize the transcriptome of strain WCFS1 during colonization of the caeca of adult germ-free C57Bl/6 J mice fed a standard low-fat rodent chow diet rich in complex plant polysaccharides or a prototypic Western diet high in simple sugars and fat. Lactobacillus plantarum colonized the digestive tracts of these animals to high levels, although L. plantarum was found in 10-fold higher amounts in the caeca of mice fed the standard chow. Metabolic reconstructions based on the transcriptional data sets revealed that genes involved in carbohydrate transport and metabolism form the principal functional group that is upregulated in vivo compared with exponential phase cells grown in three different culture media, and that a Western diet provides a more nutritionally restricted, growth limiting milieu for the microbe in the distal gut. A set of bacterial genes encoding cell surface-related functions were differentially regulated in both groups of mice. This set included downregulated genes required for the d-alanylation of lipoteichoic acids, extracellular structures of L. plantarum that mediate interactions with the host immune system. These results, obtained in a reductionist gnotobiotic mouse model of the gut ecosystem, provide insights about the niches (professions) of this lactic acid bacterium, and a context for systematically testing features that affect epithelial and immune cell responses to this organism in the digestive tract.
Gastroenterology Research and Practice | 2011
J. William Critchfield; Saskia van Hemert; Michael Ash; Linda Mulder; Paul Ashwood
Gastrointestinal (GI) dysfunction has been reported in a substantial number of children with autism spectrum disorders (ASD). Activation of the mucosal immune response and the presence of abnormal gut microbiota are repeatedly observed in these children. In children with ASD, the presence of GI dysfunction is often associated with increased irritability, tantrums, aggressive behaviour, and sleep disturbances. Moreover, modulating gut bacteria with short-term antibiotic treatment can lead to temporary improvement in behavioral symptoms in some individuals with ASD. Probiotics can influence microbiota composition and intestinal barrier function and alter mucosal immune responses. The administration of probiotic bacteria to address changes in the microbiota might, therefore, be a useful novel therapeutic tool with which to restore normal gut microbiota, reduce inflammation, restore epithelial barrier function, and potentially ameliorate behavioural symptoms associated with some children with ASD. In this review of the literature, support emerges for the clinical testing of probiotics in ASD, especially in the context of addressing GI symptoms.
Microbial Biotechnology | 2016
Maurits van den Nieuwboer; Saskia van Hemert; Eric Claassen; Willem M. de Vos
Lactobacillus plantarum WCFS1 is one of the best studied Lactobacilli, notably as its genome was unravelled over 12 years ago. L. plantarum WCFS1 can be grown to high densities, is amenable to genetic transformation and highly robust with a relatively high survival rate during the gastrointestinal passage. In this review, we present and discuss the main insights provided by the functional genomics research on L. plantarum WCFS1 with specific attention for the molecular mechanisms related to its interaction with the human host and its potential to modify the immune system, and induce other health‐related benefits. Whereas most insight has been gained in mouse and other model studies, only five human studies have been reported with L. plantarum WCFS1. Hence NCIMB 8826 (the parental strain of L. plantarum WCFS1) in human trials as to capitalize on the wealth of knowledge that is summarized here.
American Journal of Reproductive Immunology | 2015
Gregor Reid; Patrizia Brigidi; Jeremy P. Burton; Nikhat Contractor; Sylvia H. Duncan; Emilie Fargier; Colin Hill; Sarah Lebeer; Rocío Martín; Andrew J. McBain; Gil Mor; Catherine O'Neill; Juan M. Rodríguez; Jonathan R. Swann; Saskia van Hemert; Juliett Ansell
As studies uncover the breadth of microbes associated with human life, opportunities will emerge to manipulate and augment their functions in ways that improve health and longevity. From involvement in the complexities of reproduction and fetal/infant development, to delaying the onset of disease, and indeed countering many maladies, microbes offer hope for human well‐being. Evidence is emerging to suggest that microbes may play a beneficial role in body sites traditionally viewed as being sterile. Although further evidence is required, we propose that much of medical dogma is about to change significantly through recognition and understanding of these hitherto unrecognized microbe–host interactions. A meeting of the International Scientific Association for Probiotics and Prebiotics held in Aberdeen, Scotland (June 2014), presented new views and challenged established concepts on the role of microbes in reproduction and health of the mother and infant. This article summarizes some of the main aspects of these discussions.
Comparative Biochemistry and Physiology Part D: Genomics and Proteomics | 2006
Saskia van Hemert; A.J.W. Hoekman; Mari A. Smits; J.M.J. Rebel
So far the responses of chickens to Salmonella have not been studied in vivo on a whole genome-wide scale. Furthermore, the influence of the host genetic background on gene expression responses is unknown. In this study gene expression profiles in the chicken (Gallus gallus) intestine of two genetically different chicken lines were compared, 24 h after a Salmonella enteritidis inoculation in 1-day-old chicks. The two chicken lines differed in the severity of the systemic infection. For gene expression profiles, a whole genome oligonucleotide array and a cDNA microarray were used to compare both platforms. Genes upregulated in both chicken lines after the Salmonella infection had a function in the innate immune system or in wound healing. Genes regulated after the Salmonella infection in one chicken line encoded proteins involved in inflammation, or with unknown functions. In the other chicken line upregulated genes encoded proteins involved in acute phase response, the fibrinogen system, actin polymerisation, or with unknown functions. Some of the host gene responses found in this study are not described before as response to a bacterial infection in the intestine. The two chicken lines reacted with different intestinal gene responses to the Salmonella infection, implying that it is important to use chickens with different genetic background to study gene expression responses.
Journal of Bacteriology | 2012
Kerstin Hochwind; Thomas Weinmaier; Michael Schmid; Saskia van Hemert; Anton Hartmann; Thomas Rattei; Michael Rothballer
We announce the draft genome sequence of Lactobacillus casei W56 in one contig. This strain shows immunomodulatory and probiotic properties. The strain is also an ingredient of commercially available probiotic products.