Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sassan Saatchi is active.

Publication


Featured researches published by Sassan Saatchi.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Benchmark map of forest carbon stocks in tropical regions across three continents

Sassan Saatchi; Nancy Lee Harris; Sandra A. Brown; Michael A. Lefsky; Edward T. A. Mitchard; William Salas; Brian R. Zutta; Wolfgang Buermann; Simon L. Lewis; Stephen J. Hagen; Silvia Petrova; Lee White; Miles R. Silman; Alexandra Morel

Developing countries are required to produce robust estimates of forest carbon stocks for successful implementation of climate change mitigation policies related to reducing emissions from deforestation and degradation (REDD). Here we present a “benchmark” map of biomass carbon stocks over 2.5 billion ha of forests on three continents, encompassing all tropical forests, for the early 2000s, which will be invaluable for REDD assessments at both project and national scales. We mapped the total carbon stock in live biomass (above- and belowground), using a combination of data from 4,079 in situ inventory plots and satellite light detection and ranging (Lidar) samples of forest structure to estimate carbon storage, plus optical and microwave imagery (1-km resolution) to extrapolate over the landscape. The total biomass carbon stock of forests in the study region is estimated to be 247 Gt C, with 193 Gt C stored aboveground and 54 Gt C stored belowground in roots. Forests in Latin America, sub-Saharan Africa, and Southeast Asia accounted for 49%, 25%, and 26% of the total stock, respectively. By analyzing the errors propagated through the estimation process, uncertainty at the pixel level (100 ha) ranged from ±6% to ±53%, but was constrained at the typical project (10,000 ha) and national (>1,000,000 ha) scales at ca. ±5% and ca. ±1%, respectively. The benchmark map illustrates regional patterns and provides methodologically comparable estimates of carbon stocks for 75 developing countries where previous assessments were either poor or incomplete.


Science | 2012

Baseline map of carbon emissions from deforestation in tropical regions.

Nancy Lee Harris; Sandra A. Brown; Stephen Hagen; Sassan Saatchi; Silvia Petrova; William Salas; Matthew C. Hansen; Peter V. Potapov; Alexander Lotsch

Tropical Carbon Loss Accurate and precise measures of tropical deforestation and the resulting carbon emissions are needed in order to formulate climate policy. Harris et al. (p. 1573; see the Perspective by Zarin) used satellite observations of deforestation within the tropics of three continents to estimate that gross annual carbon emissions were approximately 0.8 Pg Cyr−2 (Pg = 1015 g) for the years 2000 to 2005, from the loss of 43 million hectares of forest. This result, which is about one-third of some previous estimates, should serve as a baseline for future assessments of changes in the rate of loss of tropical forests. Tropical deforestation and degradation across three continents led to ~0.8 petagrams of yearly carbon emissions from 2000 to 2005. Policies to reduce emissions from deforestation would benefit from clearly derived, spatially explicit, statistically bounded estimates of carbon emissions. Existing efforts derive carbon impacts of land-use change using broad assumptions, unreliable data, or both. We improve on this approach using satellite observations of gross forest cover loss and a map of forest carbon stocks to estimate gross carbon emissions across tropical regions between 2000 and 2005 as 0.81 petagram of carbon per year, with a 90% prediction interval of 0.57 to 1.22 petagrams of carbon per year. This estimate is 25 to 50% of recently published estimates. By systematically matching areas of forest loss with their carbon stocks before clearing, these results serve as a more accurate benchmark for monitoring global progress on reducing emissions from deforestation.


Geophysical Research Letters | 2011

New global observations of the terrestrial carbon cycle from GOSAT: patterns of plant fluorescence with gross primary productivity

Christian Frankenberg; Joshua B. Fisher; John R. Worden; Grayson Badgley; Sassan Saatchi; Jung-Eun Lee; Geoffrey C. Toon; A. Butz; Martin Jung; Akihiko Kuze; Tatsuya Yokota

Our ability to close the Earths carbon budget and predict feedbacks in a warming climate depends critically on knowing where, when and how carbon dioxide is exchanged between the land and atmosphere. Terrestrial gross primary production (GPP) constitutes the largest flux component in the global carbon budget, however significant uncertainties remain in GPP estimates and its seasonality. Empirically, we show that global spaceborne observations of solar induced chlorophyll fluorescence – occurring during photosynthesis – exhibit a strong linear correlation with GPP. We found that the fluorescence emission even without any additional climatic or model information has the same or better predictive skill in estimating GPP as those derived from traditional remotely-sensed vegetation indices using ancillary data and model assumptions. In boreal summer the generally strong linear correlation between fluorescence and GPP models weakens, attributable to discrepancies in savannas/croplands (18–48% higher fluorescence-based GPP derived by simple linear scaling), and high-latitude needleleaf forests (28–32% lower fluorescence). Our results demonstrate that retrievals of chlorophyll fluorescence provide direct global observational constraints for GPP and open an entirely new viewpoint on the global carbon cycle. We anticipate that global fluorescence data in combination with consolidated plant physiological fluorescence models will be a step-change in carbon cycle research and enable an unprecedented robustness in the understanding of the current and future carbon cycle.


Progress in Physical Geography | 2008

Measuring and modelling biodiversity from space

Thomas W. Gillespie; Giles M. Foody; Duccio Rocchini; Ana Paula Giorgi; Sassan Saatchi

The Earth is undergoing an accelerated rate of native ecosystem conversion and degradation and there is increased interest in measuring and modelling biodiversity from space. Biogeographers have a long-standing interest in measuring patterns of species occurrence and distributional movements and an interest in modelling species distributions and patterns of diversity. Much progress has been made in identifying plant species from space using high-resolution satellites (QuickBird, IKONOS), while the measurement of species movements has become commonplace with the ARGOS satellite tracking system which has been used to track the movements of thousands of individual animals. There have been significant advances in land-cover classifications by combining data from multi-passive and active sensors, and new classification techniques. Species distribution modelling has been growing at a striking rate and the incorporation of spaceborne data on climate, topography, land cover, and vegetation structure has great potential to improve models. There have been significant advances in modelling species richness, alpha diversity, and beta diversity using multisensors to quantify land-cover classifications and landscape metrics, measures of productivity, and measures of heterogeneity. Remote sensing of nature reserves can provide natural resources managers with near real-time data within and around reserves that can be used to support conservation efforts anywhere in the world. Future research should focus on incorporating recent spaceborne sensors, more extensive integration of available spaceborne imagery, and the collection and dissemination of high-quality field data. This will improve our understanding of the distribution of life on earth.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Persistent effects of a severe drought on Amazonian forest canopy

Sassan Saatchi; Salvi Asefi-Najafabady; Yadvinder Malhi; Luiz E. O. C. Aragão; Liana O. Anderson; Ranga B. Myneni; Ramakrishna R. Nemani

Recent Amazonian droughts have drawn attention to the vulnerability of tropical forests to climate perturbations. Satellite and in situ observations have shown an increase in fire occurrence during drought years and tree mortality following severe droughts, but to date there has been no assessment of long-term impacts of these droughts across landscapes in Amazonia. Here, we use satellite microwave observations of rainfall and canopy backscatter to show that more than 70 million hectares of forest in western Amazonia experienced a strong water deficit during the dry season of 2005 and a closely corresponding decline in canopy structure and moisture. Remarkably, and despite the gradual recovery in total rainfall in subsequent years, the decrease in canopy backscatter persisted until the next major drought, in 2010. The decline in backscatter is attributed to changes in structure and water content associated with the forest upper canopy. The persistence of low backscatter supports the slow recovery (>4 y) of forest canopy structure after the severe drought in 2005. The result suggests that the occurrence of droughts in Amazonia at 5–10 y frequency may lead to persistent alteration of the forest canopy.


Geophysical Research Letters | 2009

Using satellite radar backscatter to predict above-ground woody biomass: A consistent relationship across four different African landscapes

Edward T. A. Mitchard; Sassan Saatchi; Iain H. Woodhouse; G Nangendo; Natasha Ribeiro; Mathew Williams; Casey M. Ryan; Simon L. Lewis; Ted R. Feldpausch; Patrick Meir

[1] Regional-scale above-ground biomass (AGB) estimates of tropical savannas and woodlands are highly uncertain, despite their global importance for ecosystems services and as carbon stores. In response, we collated field inventory data from 253 plots at four study sites in Cameroon, Uganda and Mozambique, and examined the relationships between field-measured AGB and cross-polarized radar backscatter values derived from ALOS PALSAR, an L-band satellite sensor. The relationships were highly significant, similar among sites, and displayed high prediction accuracies up to 150 Mg ha � 1 (±� 20%). AGB predictions for any given site obtained using equations derived from data from only the other three sites generated only small increases in error. The results suggest that a widely applicable general relationship exists between AGB and L-band backscatter for lower-biomass tropical woody vegetation. This relationship allows regional-scale AGB estimation, required for example by planned REDD (Reducing Emissions from Deforestation and Degradation) schemes. Citation: Mitchard, E. T. A., S. S. Saatchi, I. H. Woodhouse, G. Nangendo, N. S. Ribeiro, M. Williams, C. M. Ryan, S. L. Lewis, T. R. Feldpausch, and P. Meir (2009), Using satellite radar backscatter to predict above-ground woody biomass: A consistent relationship across four different African landscapes, Geophys. Res. Lett., 36, L23401, doi:10.1029/2009GL040692.


Philosophical Transactions of the Royal Society B | 2013

Forest productivity and water stress in Amazonia: observations from GOSAT chlorophyll fluorescence

Jung-Eun Lee; Christian Frankenberg; Christiaan van der Tol; Joseph A. Berry; Luis Guanter; C. Kevin Boyce; Joshua B. Fisher; Eric M. Morrow; John R. Worden; Salvi Asefi; Grayson Badgley; Sassan Saatchi

It is unclear to what extent seasonal water stress impacts on plant productivity over Amazonia. Using new Greenhouse gases Observing SATellite (GOSAT) satellite measurements of sun-induced chlorophyll fluorescence, we show that midday fluorescence varies with water availability, both of which decrease in the dry season over Amazonian regions with substantial dry season length, suggesting a parallel decrease in gross primary production (GPP). Using additional SeaWinds Scatterometer onboard QuikSCAT satellite measurements of canopy water content, we found a concomitant decrease in daily storage of canopy water content within branches and leaves during the dry season, supporting our conclusion. A large part (r2 = 0.75) of the variance in observed monthly midday fluorescence from GOSAT is explained by water stress over moderately stressed evergreen forests over Amazonia, which is reproduced by model simulations that include a full physiological representation of photosynthesis and fluorescence. The strong relationship between GOSAT and model fluorescence (r2 = 0.79) was obtained using a fixed leaf area index, indicating that GPP changes are more related to environmental conditions than chlorophyll contents. When the dry season extended to drought in 2010 over Amazonia, midday basin-wide GPP was reduced by 15 per cent compared with 2009.


Nature | 2014

Widespread decline of Congo rainforest greenness in the past decade

Liming Zhou; Yuhong Tian; Ranga B. Myneni; Philippe Ciais; Sassan Saatchi; Yi Y. Liu; Shilong Piao; Haishan Chen; Eric F. Vermote; Conghe Song; Taehee Hwang

Tropical forests are global epicentres of biodiversity and important modulators of climate change, and are mainly constrained by rainfall patterns. The severe short-term droughts that occurred recently in Amazonia have drawn attention to the vulnerability of tropical forests to climatic disturbances. The central African rainforests, the second-largest on Earth, have experienced a long-term drying trend whose impacts on vegetation dynamics remain mostly unknown because in situ observations are very limited. The Congolese forest, with its drier conditions and higher percentage of semi-evergreen trees, may be more tolerant to short-term rainfall reduction than are wetter tropical forests, but for a long-term drought there may be critical thresholds of water availability below which higher-biomass, closed-canopy forests transition to more open, lower-biomass forests. Here we present observational evidence for a widespread decline in forest greenness over the past decade based on analyses of satellite data (optical, thermal, microwave and gravity) from several independent sensors over the Congo basin. This decline in vegetation greenness, particularly in the northern Congolese forest, is generally consistent with decreases in rainfall, terrestrial water storage, water content in aboveground woody and leaf biomass, and the canopy backscatter anomaly caused by changes in structure and moisture in upper forest layers. It is also consistent with increases in photosynthetically active radiation and land surface temperature. These multiple lines of evidence indicate that this large-scale vegetation browning, or loss of photosynthetic capacity, may be partially attributable to the long-term drying trend. Our results suggest that a continued gradual decline of photosynthetic capacity and moisture content driven by the persistent drying trend could alter the composition and structure of the Congolese forest to favour the spread of drought-tolerant species.


IEEE Transactions on Geoscience and Remote Sensing | 2007

Estimation of Forest Fuel Load From Radar Remote Sensing

Sassan Saatchi; Kerry Q. Halligan; Don G. Despain; Robert L. Crabtree

Understanding fire behavior characteristics and planning for fire management require maps showing the distribution of wildfire fuel loads at medium to fine spatial resolution across large landscapes. Radar sensors from airborne or spaceborne platforms have the potential of providing quantitative information about the forest structure and biomass components that can be readily translated to meaningful fuel load estimates for fire management. In this paper, we used multifrequency polarimetric synthetic aperture radar (SAR) imagery acquired over a large area of the Yellowstone National Park by the Airborne SAR sensor to estimate the distribution of forest biomass and canopy fuel loads. Semiempirical algorithms were developed to estimate crown and stem biomass and three major fuel load parameters, namely: 1) canopy fuel weight; 2) canopy bulk density; and 3) foliage moisture content. These estimates, when compared directly to measurements made at plot and stand levels, provided more than 70% accuracy and, when partitioned into fuel load classes, provided more than 85% accuracy. Specifically, the radar-generated fuel parameters were in good agreement with the field-based fuel measurements, resulting in coefficients of determination of R2=85 for the canopy fuel weight, R2 =0.84 for canopy bulk density, and R2=0.78 for the foliage biomass


Global Change Biology | 2015

Observing terrestrial ecosystems and the carbon cycle from space.

David Schimel; Ryan Pavlick; Joshua B. Fisher; Gregory P. Asner; Sassan Saatchi; Philip A. Townsend; Charles E. Miller; Christian Frankenberg; Kathy Hibbard; Peter M. Cox

Terrestrial ecosystem and carbon cycle feedbacks will significantly impact future climate, but their responses are highly uncertain. Models and tipping point analyses suggest the tropics and arctic/boreal zone carbon-climate feedbacks could be disproportionately large. In situ observations in those regions are sparse, resulting in high uncertainties in carbon fluxes and fluxes. Key parameters controlling ecosystem carbon responses, such as plant traits, are also sparsely observed in the tropics, with the most diverse biome on the planet treated as a single type in models. We analyzed the spatial distribution of in situ data for carbon fluxes, stocks and plant traits globally and also evaluated the potential of remote sensing to observe these quantities. New satellite data products go beyond indices of greenness and can address spatial sampling gaps for specific ecosystem properties and parameters. Because environmental conditions and access limit in situ observations in tropical and arctic/boreal environments, use of space-based techniques can reduce sampling bias and uncertainty about tipping point feedbacks to climate. To reliably detect change and develop the understanding of ecosystems needed for prediction, significantly, more data are required in critical regions. This need can best be met with a strategic combination of remote and in situ data, with satellite observations providing the dense sampling in space and time required to characterize the heterogeneity of ecosystem structure and function.

Collaboration


Dive into the Sassan Saatchi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Liang Xu

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yifan Yu

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Antonio Ferraz

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Victoria Meyer

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge