Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Satenig Guler is active.

Publication


Featured researches published by Satenig Guler.


Bioorganic & Medicinal Chemistry Letters | 2009

Selective inhibitors of tumor progression loci-2 (Tpl2) kinase with potent inhibition of TNF-α production in human whole blood

Junjun Wu; Neal Green; Rajeev Hotchandani; Yonghan Hu; Jeffrey Scott Condon; Adrian Huang; Neelu Kaila; Huan-Qiu Li; Satenig Guler; Wei Li; Steve Tam; Qin Wang; Jeffrey W. Pelker; Suzana Marusic; Sang Hsu; J. Perry Hall; Jean-Baptiste Telliez; Junqing Cui; Lih-Ling Lin

Tpl2 (cot/MAP3K8) is an upstream kinase of MEK in the ERK pathway. It plays an important role in Tumor Necrosis Factor-alpha (TNF-alpha) production and signaling. We have discovered that 8-halo-4-(3-chloro-4-fluoro-phenylamino)-6-[(1H-[1,2,3]triazol-4-ylmethyl)-amino]-quinoline-3-carbonitriles (4) are potent inhibitors of this enzyme. In order to improve the inhibition of TNF-alpha production in LPS-stimulated human blood, a series of analogs with a variety of substitutions around the triazole moiety were studied. We found that a cyclic amine group appended to the triazole ring could considerably enhance potency, aqueous solubility, and cell membrane permeability. Optimization of these cyclic amine groups led to the identification of 8-chloro-4-(3-chloro-4-fluorophenylamino)-6-((1-(1-ethylpiperidin-4-yl)-1H-1,2,3-triazol-4-yl)methylamino)quinoline-3-carbonitrile (34). In a LPS-stimulated rat inflammation model, compound 34 showed good efficacy in inhibiting TNF-alpha production.


ACS Chemical Biology | 2012

In Vivo Validation of Thymidylate Kinase (TMK) with a Rationally Designed, Selective Antibacterial Compound

Thomas A. Keating; Joseph V. Newman; Nelson B. Olivier; Linda G. Otterson; Beth Andrews; P. Ann Boriack-Sjodin; John N. Breen; Peter Doig; Jacques Dumas; Eric Gangl; Oluyinka Green; Satenig Guler; Martin F. Hentemann; Diane Joseph-McCarthy; Sameer Kawatkar; Amy Kutschke; James T. Loch; Andrew R. McKenzie; Selvi Pradeepan; Swati Prasad; Gabriel Martinez-Botella

There is an urgent need for new antibacterials that pinpoint novel targets and thereby avoid existing resistance mechanisms. We have created novel synthetic antibacterials through structure-based drug design that specifically target bacterial thymidylate kinase (TMK), a nucleotide kinase essential in the DNA synthesis pathway. A high-resolution structure shows compound TK-666 binding partly in the thymidine monophosphate substrate site, but also forming new induced-fit interactions that give picomolar affinity. TK-666 has potent, broad-spectrum Gram-positive microbiological activity (including activity against methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus), bactericidal action with rapid killing kinetics, excellent target selectivity over the human ortholog, and low resistance rates. We demonstrate in vivo efficacy against S. aureus in a murine infected-thigh model. This work presents the first validation of TMK as a compelling antibacterial target and provides a rationale for pursuing novel clinical candidates for treating Gram-positive infections through TMK.


Nature microbiology | 2017

ETX2514 is a broad-spectrum β-lactamase inhibitor for the treatment of drug-resistant Gram-negative bacteria including Acinetobacter baumannii

Thomas F. Durand-Réville; Satenig Guler; Janelle Comita-Prevoir; Brendan Chen; Neil Bifulco; Hoan Huynh; Sushmita D. Lahiri; Adam B. Shapiro; Sarah M. McLeod; Nicole M. Carter; Samir H. Moussa; Camilo Velez-Vega; Nelson B. Olivier; Robert E. McLaughlin; Ning Gao; Jason Thresher; Tiffany Palmer; Beth Andrews; Robert A. Giacobbe; Joseph V. Newman; David E. Ehmann; Boudewijn L. M. de Jonge; John P. O'Donnell; John P. Mueller; Ruben Tommasi; Alita A. Miller

Multidrug-resistant (MDR) bacterial infections are a serious threat to public health. Among the most alarming resistance trends is the rapid rise in the number and diversity of β-lactamases, enzymes that inactivate β-lactams, a class of antibiotics that has been a therapeutic mainstay for decades. Although several new β-lactamase inhibitors have been approved or are in clinical trials, their spectra of activity do not address MDR pathogens such as Acinetobacter baumannii. This report describes the rational design and characterization of expanded-spectrum serine β-lactamase inhibitors that potently inhibit clinically relevant class A, C and D β-lactamases and penicillin-binding proteins, resulting in intrinsic antibacterial activity against Enterobacteriaceae and restoration of β-lactam activity in a broad range of MDR Gram-negative pathogens. One of the most promising combinations is sulbactam–ETX2514, whose potent antibacterial activity, in vivo efficacy against MDR A. baumannii infections and promising preclinical safety demonstrate its potential to address this significant unmet medical need.


Journal of Medicinal Chemistry | 2012

Discovery of Selective and Potent Inhibitors of Gram-Positive Bacterial Thymidylate Kinase (TMK).

Gabriel Martinez-Botella; John N. Breen; James Duffy; Jacques Dumas; Bolin Geng; Ian K. Gowers; Oluyinka Green; Satenig Guler; Martin F. Hentemann; Felix A. Hernandez-Juan; Diane Joseph-McCarthy; Sameer Kawatkar; Nicholas A. Larsen; Ovadia Lazari; James T. Loch; Jacqueline Macritchie; Andrew R. McKenzie; Joseph V. Newman; Nelson B. Olivier; Linda G. Otterson; Andrew Pate Owens; Jon Read; David W. Sheppard; Thomas A. Keating

Thymidylate kinase (TMK) is an essential enzyme in bacterial DNA synthesis. The deoxythymidine monophosphate (dTMP) substrate binding pocket was targeted in a rational-design, structure-supported effort, yielding a unique series of antibacterial agents showing a novel, induced-fit binding mode. Lead optimization, aided by X-ray crystallography, led to picomolar inhibitors of both Streptococcus pneumoniae and Staphylococcus aureus TMK. MICs < 1 μg/mL were achieved against methicillin-resistant S. aureus (MRSA), S. pneumoniae, and vancomycin-resistant Enterococcus (VRE). Log D adjustments yielded single diastereomers 14 (TK-666) and 46, showing a broad antibacterial spectrum against Gram-positive bacteria and excellent selectivity against the human thymidylate kinase ortholog.


Journal of Medicinal Chemistry | 2014

Antibacterial inhibitors of gram-positive thymidylate kinase: structure-activity relationships and chiral preference of a new hydrophobic binding region.

Sameer Kawatkar; Thomas A. Keating; Nelson B. Olivier; John N. Breen; Oluyinka Green; Satenig Guler; Martin F. Hentemann; James T. Loch; Andrew R. McKenzie; Joseph V. Newman; Linda G. Otterson; Gabriel Martinez-Botella

Thymidylate kinase (TMK), an essential enzyme in bacterial DNA biosynthesis, is an attractive therapeutic target for the development of novel antibacterial agents, and we continue to explore TMK inhibitors with improved potency, protein binding, and pharmacokinetic potential. A structure-guided design approach was employed to exploit a previously unexplored region in Staphylococcus aureus TMK via novel interactions. These efforts produced compound 39, with 3 nM IC50 against S. aureus TMK and 2 μg/mL MIC against methicillin-resistant S. aureus (MRSA). This compound exhibits a striking inverted chiral preference for binding relative to earlier compounds and also has improved physical properties and pharmacokinetics over previously published compounds. An example of this new series was efficacious in a murine S. aureus infection model, suggesting that compounds like 39 are options for further work toward a new Gram-positive antibiotic by maintaining a balance of microbiological potency, low clearance, and low protein binding that can result in lower efficacious doses.


Bioorganic & Medicinal Chemistry Letters | 2011

Continued exploration of biphenylsulfonamide scaffold as a platform for aggrecanase-1 inhibition.

Yonghan Hu; Li Xing; Jennifer R. Thomason; Jason Shaoyun Xiang; Manus Ipek; Satenig Guler; Huan-Qiu Li; Joshua James Sabatini; Priya S. Chockalingam; Erica Reifenberg; Richard Sheldon; E.A. Morris; Katy E. Georgiadis; Steve Tam

Design, synthesis and structure-activity relationship of a series of biphenylsulfonamido-3-methylbutanoic acid based aggrecanase-1 inhibitors are described. In addition to robust aggrecanase-1 inhibition, these compounds also exhibit potent MMP-13 activity. In cell-based cartilage explants assay compound 48 produced 87% inhibition of proteoglycan degradation at 10 μg/mL. Good pharmacokinetic properties were demonstrated by 46 with a half-life of 6h and bioavailability of 23%.


Journal of Medicinal Chemistry | 2007

Inhibitors of Tumor Progression Loci-2 (Tpl2) Kinase and Tumor Necrosis Factor α (TNF-α) Production: Selectivity and in Vivo Antiinflammatory Activity of Novel 8-Substituted-4-anilino-6-aminoquinoline-3-carbonitriles

Neal Green; Yonghan Hu; Kristin Janz; Huan-Qiu Li; Neelu Kaila; Satenig Guler; Jennifer R. Thomason; Diane Joseph-McCarthy; Steve Tam; Rajeev Hotchandani; Junjun Wu; Adrian Huang; Qin Wang; Louis Leung; Jefferey Pelker; Suzana Marusic; Sang Hsu; Jean-Baptiste Telliez; J. Perry Hall; John W. Cuozzo,§,; and; Lih-Ling Lin


Archive | 2006

3-cyanoquinoline inhibitors of tpl2 kinase and methods of making and using the same

Neal Green; Yonghan Hu; Neelu Kaila; Kristin Janz; Jennifer R. Thomason; Huan-Qiu Li; Rajeev Hotchandani; Junjun Wu; Ariamala Gopalsamy; Steve Tam; Lih-Ling Lin; John W. Cuozzo; Satenig Guler; Adrian Huang; Jeffrey Scott Condon


Archive | 2013

Heterobicyclic compounds as beta-lactamase inhibitors

Helen M. McGuire; Shanta Bist; Neil Bifulco; Liang Zhao; Ye Wu; Hoan Huynh; Hui Xiong; Janelle Comita-Prevoir; Daemian Dussault; Bolin Geng; Brendan Chen; Thomas F. Durand-Réville; Satenig Guler


Archive | 2013

Beta-Lactamase Inhibitor Compounds

Helen M. McGuire; Shanta Bist; Neil Bifulco; Liang Zhao; Ye Wu; Hoan Huynh; Hui Xiong; Janelle Comita-Prevoir; Daemian Dussault; Bolin Geng; Brendan Chen; Thomas F. Durand-Réville; Satenig Guler

Collaboration


Dive into the Satenig Guler's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge