Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sathish Kumar Mungamuri is active.

Publication


Featured researches published by Sathish Kumar Mungamuri.


Cancer Research | 2006

Survival Signaling by Notch1: Mammalian Target of Rapamycin (mTOR)–Dependent Inhibition of p53

Sathish Kumar Mungamuri; Xiaohe Yang; Ann D. Thor; Kumaravel Somasundaram

Notch signaling is believed to promote cell survival in general. However, the mechanism is not clearly understood. Here, we show that cells expressing intracellular domain of human Notch1 (NIC-1) are chemoresistant in a wild-type p53-dependent manner. NIC-1 inhibited p53 by inhibiting its activating phosphorylations at Ser(15), Ser(20), and Ser(392) as well as nuclear localization. In addition, we found that inhibition of p53 by NIC-1 mainly occurs through mammalian target of rapamycin (mTOR) using phosphatidylinositol 3-kinase (PI3K)-Akt/protein kinase B (PKB) pathway as the mTOR inhibitor, rapamycin treatment abrogated NIC-1 inhibition of p53 and reversed the chemoresistance. Consistent with this, rapamycin failed to reverse NIC-1-induced chemoresistance in cells expressing rapamycin-resistant mTOR. Further, ectopic expression of eukaryotic initiation factor 4E (eIF4E), a translational regulator that acts downstream of mTOR, inhibited p53-induced apoptosis and conferred protection against p53-mediated cytotoxicity to similar extent as that of NIC-1 overexpression but was not reversed by rapamycin, which indicates that eIF4E is the major target of mTOR in Notch1-mediated survival signaling. Finally, we show that MCF7 (breast cancer) and MOLT4 (T-cell acute lymphoblastic leukemia) cells having aberrant Notch1 signaling are chemoresistant, which can be reversed by both PI3K and mTOR inhibitors. These results establish that Notch1 signaling confers chemoresistance by inhibiting p53 pathway through mTOR-dependent PI3K-Akt/PKB pathway and imply that p53 status perhaps is an important determinant in combination therapeutic strategies, which use mTOR inhibitors and chemotherapy.


Journal of Biological Chemistry | 2008

Foxo3 Is Essential for the Regulation of Ataxia Telangiectasia Mutated and Oxidative Stress-mediated Homeostasis of Hematopoietic Stem Cells

Safak Yalcin; Xin Zhang; Julia P. Luciano; Sathish Kumar Mungamuri; Dragan Marinkovic; Cécile Vercherat; Abby Sarkar; Marcos Grisotto; Reshma Taneja; Saghi Ghaffari

Unchecked accumulation of reactive oxygen species (ROS) compromises maintenance of hematopoietic stem cells. Regulation of ROS by the tumor suppressor protein ataxia telangiectasia mutated (ATM) is critical for preserving the hematopoietic stem cell pool. In this study we demonstrate that the Foxo3 member of the Forkhead Box O (FoxO) family of transcription factors is essential for normal ATM expression. In addition, we show that loss of Foxo3 leads to defects in hematopoietic stem cells, and these defects result from an overaccumulation of ROS. Foxo3 suppression of ROS in hematopoietic stem cells is mediated partly by regulation of ATM expression. We identify ROS-independent modulations of ATM and p16INK4a and ROS-mediated activation of p53/p21CIP1/WAF1/Sdi1 tumor suppressor pathways as major contributors to Foxo3-null hematopoietic stem cells defects. Our studies demonstrate that Foxo3 represses ROS in part via regulation of ATM and that this repression is required for maintenance of the hematopoietic stem cell pool.


The EMBO Journal | 2010

ROS‐mediated amplification of AKT/mTOR signalling pathway leads to myeloproliferative syndrome in Foxo3 −/− mice

Safak Yalcin; Dragan Marinkovic; Sathish Kumar Mungamuri; Xin Zhang; Wei Tong; Rani S. Sellers; Saghi Ghaffari

Reactive oxygen species (ROS) participate in normal intracellular signalling and in many diseases including cancer and aging, although the associated mechanisms are not fully understood. Forkhead Box O (FoxO) 3 transcription factor regulates levels of ROS concentrations, and is essential for maintenance of hematopoietic stem cells. Here, we show that loss of Foxo3 causes a myeloproliferative syndrome with splenomegaly and increased hematopoietic progenitors (HPs) that are hypersensitive to cytokines. These mutant HPs contain increased ROS, overactive intracellular signalling through the AKT/mammalian target of rapamycin signalling pathway and relative deficiency of Lnk, a negative regulator of cytokine receptor signalling. In vivo treatment with ROS scavenger N‐acetyl‐cysteine corrects these biochemical abnormalities and relieves the myeloproliferation. Moreover, enforced expression of Lnk by retroviral transfer corrects the abnormal expansion of Foxo3−/− HPs in vivo. Our combined results show that loss of Foxo3 causes increased ROS accumulation in HPs. In turn, this inhibits Lnk expression that contributes to exaggerated cytokine responses that lead to myeloproliferation. Our findings could explain the mechanisms by which mutations that alter Foxo3 function induce malignancy. More generally, the work illustrates how deregulated ROS may contribute to malignant progression.


Journal of Experimental Medicine | 2013

Tumor cell entry into the lymph node is controlled by CCL1 chemokine expressed by lymph node lymphatic sinuses

Suvendu Das; Eliana Sarrou; Simona Podgrabinska; Melanie R. Cassella; Sathish Kumar Mungamuri; Nikki Feirt; Ronald L. Gordon; Chandandeep Nagi; Yarong Wang; David Entenberg; John Condeelis; Mihaela Skobe

Blocking CCR8 inhibits entry of metastases from the collecting lymphatic vessel into the lymph node.


Journal of Immunology | 2011

p53 Serves as a Host Antiviral Factor That Enhances Innate and Adaptive Immune Responses to Influenza A Virus

César Muñoz-Fontela; Michael A. Pazos; Igotz Delgado; William Murk; Sathish Kumar Mungamuri; Sam W. Lee; Adolfo García-Sastre; Thomas M. Moran; Stuart A. Aaronson

Several direct target genes of the p53 tumor suppressor have been identified within pathways involved in viral sensing, cytokine production, and inflammation, suggesting a potential role of p53 in antiviral immunity. The increasing need to identify immune factors to devise host-targeted therapies against pandemic influenza A virus (IAV) led us to investigate the role of endogenous wild-type p53 on the immune response to IAV. We observed that the absence of p53 resulted in delayed cytokine and antiviral gene responses in lung and bone marrow, decreased dendritic cell activation, and reduced IAV-specific CD8+ T cell immunity. Consequently, p53−/− mice showed a more severe IAV-induced disease compared with their wild-type counterparts. These findings establish that p53 influences the antiviral response to IAV, affecting both innate and adaptive immunity. Thus, in addition to its established functions as a tumor suppressor gene, p53 serves as an IAV host antiviral factor that might be modulated to improve anti-IAV therapy and vaccines.


PLOS Genetics | 2013

β-Catenin-Independent Activation of TCF1/LEF1 in Human Hematopoietic Tumor Cells through Interaction with ATF2 Transcription Factors

Luca Grumolato; Guizhong Liu; Tomomi Haremaki; Sathish Kumar Mungamuri; Phyllus Mong; Gal Akiri; Pablo Lopez-Bergami; Adriana Arita; Youssef Anouar; Marek Mlodzik; Ze'ev Ronai; Joshua Brody; Daniel C. Weinstein; Stuart A. Aaronson

The role of Wnt signaling in embryonic development and stem cell maintenance is well established and aberrations leading to the constitutive up-regulation of this pathway are frequent in several types of human cancers. Upon ligand-mediated activation, Wnt receptors promote the stabilization of β-catenin, which translocates to the nucleus and binds to the T-cell factor/lymphoid enhancer factor (TCF/LEF) family of transcription factors to regulate the expression of Wnt target genes. When not bound to β-catenin, the TCF/LEF proteins are believed to act as transcriptional repressors. Using a specific lentiviral reporter, we identified hematopoietic tumor cells displaying constitutive TCF/LEF transcriptional activation in the absence of β-catenin stabilization. Suppression of TCF/LEF activity in these cells mediated by an inducible dominant-negative TCF4 (DN-TCF4) inhibited both cell growth and the expression of Wnt target genes. Further, expression of TCF1 and LEF1, but not TCF4, stimulated TCF/LEF reporter activity in certain human cell lines independently of β-catenin. By a complementary approach in vivo, TCF1 mutants, which lacked the ability to bind to β-catenin, induced Xenopus embryo axis duplication, a hallmark of Wnt activation, and the expression of the Wnt target gene Xnr3. Through generation of different TCF1-TCF4 fusion proteins, we identified three distinct TCF1 domains that participate in the β-catenin-independent activity of this transcription factor. TCF1 and LEF1 physically interacted and functionally synergized with members of the activating transcription factor 2 (ATF2) family of transcription factors. Moreover, knockdown of ATF2 expression in lymphoma cells phenocopied the inhibitory effects of DN-TCF4 on the expression of target genes associated with the Wnt pathway and on cell growth. Together, our findings indicate that, through interaction with ATF2 factors, TCF1/LEF1 promote the growth of hematopoietic malignancies in the absence of β-catenin stabilization, thus establishing a new mechanism for TCF1/LEF1 transcriptional activity distinct from that associated with canonical Wnt signaling.


Oncogene | 2014

p53-dependent gene repression through p21 is mediated by recruitment of E2F4 repression complexes

E K Benson; Sathish Kumar Mungamuri; O Attie; M Kracikova; R Sachidanandam; James J. Manfredi; Stuart A. Aaronson

The p53 tumor suppressor protein is a major sensor of cellular stresses, and upon stabilization, activates or represses many genes that control cell fate decisions. While the mechanism of p53-mediated transactivation is well established, several mechanisms have been proposed for p53-mediated repression. Here, we demonstrate that the cyclin-dependent kinase inhibitor p21 is both necessary and sufficient for the downregulation of known p53-repression targets, including survivin, CDC25C, and CDC25B in response to p53 induction. These same targets are similarly repressed in response to p16 overexpression, implicating the involvement of the shared downstream retinoblastoma (RB)-E2F pathway. We further show that in response to either p53 or p21 induction, E2F4 complexes are specifically recruited onto the promoters of these p53-repression targets. Moreover, abrogation of E2F4 recruitment via the inactivation of RB pocket proteins, but not by RB loss of function alone, prevents the repression of these genes. Finally, our results indicate that E2F4 promoter occupancy is globally associated with p53-repression targets, but not with p53 activation targets, implicating E2F4 complexes as effectors of p21-dependent p53-mediated repression.


Genes & Development | 2013

The C terminus of p53 regulates gene expression by multiple mechanisms in a target- and tissue-specific manner in vivo

Pierre-Jacques Hamard; Nicolas Barthelery; Brandon Hogstad; Sathish Kumar Mungamuri; Crystal Tonnessen; Luis A. Carvajal; Emir Senturk; Virginia L. Gillespie; Stuart Aaronson; Miriam Merad; James J. Manfredi

The p53 tumor suppressor is a transcription factor that mediates varied cellular responses. The C terminus of p53 is subjected to multiple and diverse post-translational modifications. An attractive hypothesis is that differing sets of combinatorial modifications therein determine distinct cellular outcomes. To address this in vivo, a Trp53(ΔCTD/ΔCTD) mouse was generated in which the endogenous p53 is targeted and replaced with a truncated mutant lacking the C-terminal 24 amino acids. These Trp53(ΔCTD/ΔCTD) mice die within 2 wk post-partum with hematopoietic failure and impaired cerebellar development. Intriguingly, the C terminus acts via three distinct mechanisms to control p53-dependent gene expression depending on the tissue. First, in the bone marrow and thymus, the C terminus dampens p53 activity. Increased senescence in the Trp53(ΔCTD/ΔCTD) bone marrow is accompanied by up-regulation of Cdkn1 (p21). In the thymus, the C-terminal domain negatively regulates p53-dependent gene expression by inhibiting promoter occupancy. Here, the hyperactive p53(ΔCTD) induces apoptosis via enhanced expression of the proapoptotic Bbc3 (Puma) and Pmaip1 (Noxa). In the liver, a second mechanism prevails, since p53(ΔCTD) has wild-type DNA binding but impaired gene expression. Thus, the C terminus of p53 is needed in liver cells at a step subsequent to DNA binding. Finally, in the spleen, the C terminus controls p53 protein levels, with the overexpressed p53(ΔCTD) showing hyperactivity for gene expression. Thus, the C terminus of p53 regulates gene expression via multiple mechanisms depending on the tissue and target, and this leads to specific phenotypic effects in vivo.


American Journal of Hematology | 2014

FOXO3‐mTOR metabolic cooperation in the regulation of erythroid cell maturation and homeostasis

Xin Zhang; Genís Campreciós; Pauline Rimmele; Raymond Liang; Safak Yalcin; Sathish Kumar Mungamuri; Jeffrey Barminko; Valentina d'Escamard; Margaret H. Baron; Carlo Brugnara; Dmitri Papatsenko; Stefano Rivella; Saghi Ghaffari

Ineffective erythropoiesis is observed in many erythroid disorders including β‐thalassemia and anemia of chronic disease in which increased production of erythroblasts that fail to mature exacerbate the underlying anemias. As loss of the transcription factor FOXO3 results in erythroblast abnormalities similar to the ones observed in ineffective erythropoiesis, we investigated the underlying mechanisms of the defective Foxo3−/− erythroblast cell cycle and maturation. Here we show that loss of Foxo3 results in overactivation of the JAK2/AKT/mTOR signaling pathway in primary bone marrow erythroblasts partly mediated by redox modulation. We further show that hyperactivation of mTOR signaling interferes with cell cycle progression in Foxo3 mutant erythroblasts. Importantly, inhibition of mTOR signaling, in vivo or in vitro enhances significantly Foxo3 mutant erythroid cell maturation. Similarly, in vivo inhibition of mTOR remarkably improves erythroid cell maturation and anemia in a model of β‐thalassemia. Finally we show that FOXO3 and mTOR are likely part of a larger metabolic network in erythroblasts as together they control the expression of an array of metabolic genes some of which are implicated in erythroid disorders. These combined findings indicate that a metabolism‐mediated regulatory network centered by FOXO3 and mTOR control the balanced production and maturation of erythroid cells. They also highlight physiological interactions between these proteins in regulating erythroblast energy. Our results indicate that alteration in the function of this network might be implicated in the pathogenesis of ineffective erythropoiesis. Am. J. Hematol. 89:954–963, 2014.


Cell Reports | 2013

Chromatin Modifications Sequentially Enhance ErbB2 Expression in ErbB2-Positive Breast Cancers

Sathish Kumar Mungamuri; William Murk; Luca Grumolato; Emily Bernstein; Stuart A. Aaronson

ErbB2 gene amplification occurs in 20%-25% of breast cancers, and its therapeutic targeting has markedly improved survival of patients with breast cancer in the adjuvant setting. However, resistance to these therapies can develop. Because epigenetic mechanisms can importantly influence oncogene expression and be druggable as well, we investigated histone modifications that influence ErbB2 overexpression, independent of gene amplification. We demonstrate here that ErbB2-overexpressing breast carcinomas acquire the H3K4me3 mark on the erbB2 promoter and that receptor-amplified tumors further acquire the H3K9ac mark, which is dependent on H3K4me3 mark acquisition. Targeting WD repeat domain 5 (Wdr5), which is absolutely required for H3K4me3 enrichment, decreased ErbB2 overexpression, associated with a decrease in the H3K4me3 mark on the erbB2 promoter. Of note, Wdr5 silencing cooperated with trastuzumab or chemotherapy in specifically inhibiting the growth of ErbB2-positive breast tumor cells. Thus, our studies illuminate epigenetic steps in the selection for ErbB2 activation.

Collaboration


Dive into the Sathish Kumar Mungamuri's collaboration.

Top Co-Authors

Avatar

Stuart A. Aaronson

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Saghi Ghaffari

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Safak Yalcin

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Xin Zhang

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

James J. Manfredi

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Shen Yao

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adriana Arita

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge