Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sathish Ramani is active.

Publication


Featured researches published by Sathish Ramani.


IEEE Transactions on Image Processing | 2008

Monte-Carlo Sure: A Black-Box Optimization of Regularization Parameters for General Denoising Algorithms

Sathish Ramani; Thierry Blu; Michael Unser

We consider the problem of optimizing the parameters of a given denoising algorithm for restoration of a signal corrupted by white Gaussian noise. To achieve this, we propose to minimize Steins unbiased risk estimate (SURE) which provides a means of assessing the true mean-squared error (MSE) purely from the measured data without need for any knowledge about the noise-free signal. Specifically, we present a novel Monte-Carlo technique which enables the user to calculate SURE for an arbitrary denoising algorithm characterized by some specific parameter setting. Our method is a black-box approach which solely uses the response of the denoising operator to additional input noise and does not ask for any information about its functional form. This, therefore, permits the use of SURE for optimization of a wide variety of denoising algorithms. We justify our claims by presenting experimental results for SURE-based optimization of a series of popular image-denoising algorithms such as total-variation denoising, wavelet soft-thresholding, and Wiener filtering/smoothing splines. In the process, we also compare the performance of these methods. We demonstrate numerically that SURE computed using the new approach accurately predicts the true MSE for all the considered algorithms. We also show that SURE uncovers the optimal values of the parameters in all cases.


IEEE Transactions on Medical Imaging | 2011

Parallel MR Image Reconstruction Using Augmented Lagrangian Methods

Sathish Ramani; Jeffrey A. Fessler

Magnetic resonance image (MRI) reconstruction using SENSitivity Encoding (SENSE) requires regularization to suppress noise and aliasing effects. Edge-preserving and sparsity-based regularization criteria can improve image quality, but they demand computation-intensive nonlinear optimization. In this paper, we present novel methods for regularized MRI reconstruction from undersampled sensitivity encoded data-SENSE-reconstruction-using the augmented Lagrangian (AL) framework for solving large-scale constrained optimization problems. We first formulate regularized SENSE-reconstruction as an unconstrained optimization task and then convert it to a set of (equivalent) constrained problems using variable splitting. We then attack these constrained versions in an AL framework using an alternating minimization method, leading to algorithms that can be implemented easily. The proposed methods are applicable to a general class of regularizers that includes popular edge-preserving (e.g., total-variation) and sparsity-promoting (e.g., -norm of wavelet coefficients) criteria and combinations thereof. Numerical experiments with synthetic and in vivo human data illustrate that the proposed AL algorithms converge faster than both general-purpose optimization algorithms such as nonlinear conjugate gradient (NCG) and state-of-the-art MFISTA.


IEEE Transactions on Image Processing | 2012

Regularization Parameter Selection for Nonlinear Iterative Image Restoration and MRI Reconstruction Using GCV and SURE-Based Methods

Sathish Ramani; Zhihao Liu; Jeffrey Rosen; Jon Fredrik Nielsen; Jeffrey A. Fessler

Regularized iterative reconstruction algorithms for imaging inverse problems require selection of appropriate regularization parameter values. We focus on the challenging problem of tuning regularization parameters for nonlinear algorithms for the case of additive (possibly complex) Gaussian noise. Generalized cross-validation (GCV) and (weighted) mean-squared error (MSE) approaches [based on Steins unbiased risk estimate (SURE)] need the Jacobian matrix of the nonlinear reconstruction operator (representative of the iterative algorithm) with respect to the data. We derive the desired Jacobian matrix for two types of nonlinear iterative algorithms: a fast variant of the standard iterative reweighted least-squares method and the contemporary split-Bregman algorithm, both of which can accommodate a wide variety of analysis- and synthesis-type regularizers. The proposed approach iteratively computes two weighted SURE-type measures: predicted-SURE and projected-SURE (which require knowledge of noise variance σ2), and GCV (which does not need σ2) for these algorithms. We apply the methods to image restoration and to magnetic resonance image (MRI) reconstruction using total variation and an analysis-type ℓ1-regularization. We demonstrate through simulations and experiments with real data that minimizing predicted-SURE and projected-SURE consistently lead to near-MSE-optimal reconstructions. We also observe that minimizing GCV yields reconstruction results that are near-MSE-optimal for image restoration and slightly suboptimal for MRI. Theoretical derivations in this paper related to Jacobian matrix evaluations can be extended, in principle, to other types of regularizers and reconstruction algorithms.


IEEE Transactions on Medical Imaging | 2015

Combining ordered subsets and momentum for accelerated X-ray CT image reconstruction.

Donghwan Kim; Sathish Ramani; Jeffrey A. Fessler

Statistical X-ray computed tomography (CT) reconstruction can improve image quality from reduced dose scans, but requires very long computation time. Ordered subsets (OS) methods have been widely used for research in X-ray CT statistical image reconstruction (and are used in clinical PET and SPECT reconstruction). In particular, OS methods based on separable quadratic surrogates (OS-SQS) are massively parallelizable and are well suited to modern computing architectures, but the number of iterations required for convergence should be reduced for better practical use. This paper introduces OS-SQS-momentum algorithms that combine Nesterovs momentum techniques with OS-SQS methods, greatly improving convergence speed in early iterations. If the number of subsets is too large, the OS-SQS-momentum methods can be unstable, so we propose diminishing step sizes that stabilize the method while preserving the very fast convergence behavior. Experiments with simulated and real 3D CT scan data illustrate the performance of the proposed algorithms.


international conference on image processing | 2008

Recursive risk estimation for non-linear image deconvolution with a wavelet-domain sparsity constraint

Cédric Vonesch; Sathish Ramani; Michael Unser

We propose a recursive data-driven risk-estimation method for non-linear iterative deconvolution. Our two main contributions are 1) a solution-domain risk-estimation approach that is applicable to non-linear restoration algorithms for ill- conditioned inverse problems; and 2) a risk estimate for a state-of-the-art iterative procedure, the thresholded Landweber iteration, which enforces a wavelet-domain sparsity constraint. Our method can be used to estimate the SNR improvement at every step of the algorithm; e.g., for stopping the iteration after the highest value is reached. It can also be applied to estimate the optimal threshold level for a given number of iterations.


IEEE Transactions on Image Processing | 2013

Accelerated Edge-Preserving Image Restoration Without Boundary Artifacts

Antonios Matakos; Sathish Ramani; Jeffrey A. Fessler

To reduce blur in noisy images, regularized image restoration methods have been proposed that use nonquadratic regularizers (like l1 regularization or total-variation) that suppress noise while preserving edges in the image. Most of these methods assume a circulant blur (periodic convolution with a blurring kernel) that can lead to wraparound artifacts along the boundaries of the image due to the implied periodicity of the circulant model. Using a noncirculant model could prevent these artifacts at the cost of increased computational complexity. In this paper, we propose to use a circulant blur model combined with a masking operator that prevents wraparound artifacts. The resulting model is noncirculant, so we propose an efficient algorithm using variable splitting and augmented Lagrangian (AL) strategies. Our variable splitting scheme, when combined with the AL framework and alternating minimization, leads to simple linear systems that can be solved noniteratively using fast Fourier transforms (FFTs), eliminating the need for more expensive conjugate gradient-type solvers. The proposed method can also efficiently tackle a variety of convex regularizers, including edge-preserving (e.g., total-variation) and sparsity promoting (e.g., l1-norm) regularizers. Simulation results show fast convergence of the proposed method, along with improved image quality at the boundaries where the circulant model is inaccurate.


international symposium on biomedical imaging | 2008

Multiframe sure-let denoising of timelapse fluorescence microscopy images

Saskia Delpretti; Florian Luisier; Sathish Ramani; Thierry Blu; Michael Unser

Due to the random nature of photon emission and the various internal noise sources of the detectors, real timelapse fluorescence microscopy images are usually modeled as the sum of a Poisson process plus some Gaussian white noise. In this paper, we propose an adaptation of our SURE-LET denoising strategy to take advantage of the potentially strong similarities between adjacent frames of the observed image sequence. To stabilize the noise variance, we first apply the generalized Anscombe transform using suitable parameters automatically estimated from the observed data. With the proposed algorithm, we show that, in a reasonable computation time, real fluorescence timelapse microscopy images can be denoised with higher quality than conventional algorithms.


international symposium on biomedical imaging | 2010

An accelerated iterative reweighted least squares algorithm for compressed sensing MRI

Sathish Ramani; Jeffrey A. Fessler

Compressed sensing for MRI (CS-MRI) attempts to recover an object from undersampled k-space data by minimizing sparsity-promoting regularization criteria. The iterative reweighted least squares (IRLS) algorithm can perform the minimization task by solving iteration-dependent linear systems, recursively. However, this process can be slow as the associated linear system is often poorly conditioned for ill-posed problems. We propose a new scheme based on the matrix inversion lemma (MIL) to accelerate the solving process. We demonstrate numerically for CS-MRI that our method provides significant speed-up compared to linear and nonlinear conjugate gradient algorithms, thus making it a promising alternative for such applications.


IEEE Transactions on Image Processing | 2014

Generalized Higher Degree Total Variation (HDTV) Regularization

Yue Hu; Greg Ongie; Sathish Ramani; Mathews Jacob

We introduce a family of novel image regularization penalties called generalized higher degree total variation (HDTV). These penalties further extend our previously introduced HDTV penalties, which generalize the popular total variation (TV) penalty to incorporate higher degree image derivatives. We show that many of the proposed second degree extensions of TV are special cases or are closely approximated by a generalized HDTV penalty. Additionally, we propose a novel fast alternating minimization algorithm for solving image recovery problems with HDTV and generalized HDTV regularization. The new algorithm enjoys a tenfold speed up compared with the iteratively reweighted majorize minimize algorithm proposed in a previous paper. Numerical experiments on 3D magnetic resonance images and 3D microscopy images show that HDTV and generalized HDTV improve the image quality significantly compared with TV.


IEEE Transactions on Medical Imaging | 2013

Accelerated Regularized Estimation of MR Coil Sensitivities Using Augmented Lagrangian Methods

Michael J. Allison; Sathish Ramani; Jeffrey A. Fessler

Several magnetic resonance parallel imaging techniques require explicit estimates of the receive coil sensitivity profiles. These estimates must be accurate over both the object and its surrounding regions to avoid generating artifacts in the reconstructed images. Regularized estimation methods that involve minimizing a cost function containing both a data-fit term and a regularization term provide robust sensitivity estimates. However, these methods can be computationally expensive when dealing with large problems. In this paper, we propose an iterative algorithm based on variable splitting and the augmented Lagrangian method that estimates the coil sensitivity profile by minimizing a quadratic cost function. Our method, ADMM-Circ, reformulates the finite differencing matrix in the regularization term to enable exact alternating minimization steps. We also present a faster variant of this algorithm using intermediate updating of the associated Lagrange multipliers. Numerical experiments with simulated and real data sets indicate that our proposed method converges approximately twice as fast as the preconditioned conjugate gradient method over the entire field-of-view. These concepts may accelerate other quadratic optimization problems.

Collaboration


Dive into the Sathish Ramani's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Unser

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thierry Blu

The Chinese University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. Van De Ville

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge