Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Satish K. Nair is active.

Publication


Featured researches published by Satish K. Nair.


Cell | 2001

Structural Mechanism for Rifampicin Inhibition of Bacterial RNA Polymerase

Elizabeth A. Campbell; Nataliya Korzheva; Arkady Mustaev; Katsuhiko S. Murakami; Satish K. Nair; Alex Goldfarb; Seth A. Darst

Rifampicin (Rif) is one of the most potent and broad spectrum antibiotics against bacterial pathogens and is a key component of anti-tuberculosis therapy, stemming from its inhibition of the bacterial RNA polymerase (RNAP). We determined the crystal structure of Thermus aquaticus core RNAP complexed with Rif. The inhibitor binds in a pocket of the RNAP beta subunit deep within the DNA/RNA channel, but more than 12 A away from the active site. The structure, combined with biochemical results, explains the effects of Rif on RNAP function and indicates that the inhibitor acts by directly blocking the path of the elongating RNA when the transcript becomes 2 to 3 nt in length.


Natural Product Reports | 2013

Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature

Paul G. Arnison; Mervyn J. Bibb; Gabriele Bierbaum; Albert A. Bowers; Tim S. Bugni; Grzegorz Bulaj; Julio A. Camarero; Dominic J. Campopiano; Gregory L. Challis; Jon Clardy; Paul D. Cotter; David J. Craik; Michael J. Dawson; Elke Dittmann; Stefano Donadio; Pieter C. Dorrestein; Karl Dieter Entian; Michael A. Fischbach; John S. Garavelli; Ulf Göransson; Christian W. Gruber; Daniel H. Haft; Thomas K. Hemscheidt; Christian Hertweck; Colin Hill; Alexander R. Horswill; Marcel Jaspars; Wendy L. Kelly; Judith P. Klinman; Oscar P. Kuipers

This review presents recommended nomenclature for the biosynthesis of ribosomally synthesized and post-translationally modified peptides (RiPPs), a rapidly growing class of natural products. The current knowledge regarding the biosynthesis of the >20 distinct compound classes is also reviewed, and commonalities are discussed.


Science | 2006

Structure and Mechanism of the Lantibiotic Cyclase Involved in Nisin Biosynthesis

Bo Li; John Yu; Joseph S. Brunzelle; Gert N. Moll; Wilfred A. van der Donk; Satish K. Nair

Nisin is a posttranslationally modified antimicrobial peptide that is widely used as a food preservative. It contains five cyclic thioethers of varying sizes that are installed by a single enzyme, NisC. Reported here are the in vitro reconstitution of the cyclization process and the x-ray crystal structure of the NisC enzyme. The structure reveals similarities in fold and substrate activation with mammalian farnesyl transferases, suggesting that human homologs of NisC posttranslationally modify a cysteine of a protein substrate.


Oncogene | 2014

Brd4 maintains constitutively active NF-κB in cancer cells by binding to acetylated RelA.

Zhenhua Zou; Bo Huang; Xuewei Wu; Houjin Zhang; Jun Qi; James E. Bradner; Satish K. Nair; Lin Feng Chen

Acetylation of the RelA subunit of NF-κB at lysine-310 regulates the transcriptional activation of NF-κB target genes and contributes to maintaining constitutively active NF-κB in tumors. Bromodomain-containing factor Brd4 has been shown to bind to acetylated lysine-310 (AcLys310) and to regulate the transcriptional activity of NF-κB, but the role of this binding in maintaining constitutively active NF-κB in tumors remains elusive. In this study, we demonstrate the structural basis for the binding of bromodomains (BDs) of bromodomain-containing protein 4 (Brd4) to AcLys310 and identify the BD inhibitor JQ1 as an effective small molecule to block this interaction. JQ1 suppresses TNF-α-mediated NF-κB activation and NF-κB-dependent target gene expression. In addition, JQ1 inhibits the proliferation and transformation potential of A549 lung cancer cells and suppresses the tumorigenicity of A549 cells in severe combined immunodeficiency mice. Furthermore, we demonstrate that depletion of Brd4 or treatment of cells with JQ1 induces the ubiquitination and degradation of the constitutively active nuclear form of RelA. Our results identify a novel function of Brd4 in maintaining the persistently active form of NF-κB found in tumors, and they suggest that interference with the interaction between acetylated RelA and Brd4 could be a potential therapeutic approach for the treatment of NF-κB-driven cancer.


Nature | 2015

Structure and mechanism of the tRNA-dependent lantibiotic dehydratase NisB

Manuel A. Ortega; Yue Hao; Qi Zhang; Mark C. Walker; Wilfred A. van der Donk; Satish K. Nair

Lantibiotics are a class of peptide antibiotics that contain one or more thioether bonds. The lantibiotic nisin is an antimicrobial peptide that is widely used as a food preservative to combat food-borne pathogens. Nisin contains dehydroalanine and dehydrobutyrine residues that are formed by the dehydration of Ser/Thr by the lantibiotic dehydratase NisB (ref. 2). Recent biochemical studies revealed that NisB glutamylates Ser/Thr side chains as part of the dehydration process. However, the molecular mechanism by which NisB uses glutamate to catalyse dehydration remains unresolved. Here we show that this process involves glutamyl-tRNAGlu to activate Ser/Thr residues. In addition, the 2.9-Å crystal structure of NisB in complex with its substrate peptide NisA reveals the presence of two separate domains that catalyse the Ser/Thr glutamylation and glutamate elimination steps. The co-crystal structure also provides insights into substrate recognition by lantibiotic dehydratases. Our findings demonstrate an unexpected role for aminoacyl-tRNA in the formation of dehydroamino acids in lantibiotics, and serve as a basis for the functional characterization of the many lantibiotic-like dehydratases involved in the biosynthesis of other classes of natural products.


Nature | 2009

An unusual carbon-carbon bond cleavage reaction during phosphinothricin biosynthesis

Robert M. Cicchillo; Houjin Zhang; Joshua A. V. Blodgett; John T. Whitteck; Gongyong Li; Satish K. Nair; Wilfred A. van der Donk; William W. Metcalf

Natural products containing phosphorus–carbon bonds have found widespread use in medicine and agriculture. One such compound, phosphinothricin tripeptide, contains the unusual amino acid phosphinothricin attached to two alanine residues. Synthetic phosphinothricin (glufosinate) is a component of two top-selling herbicides (Basta and Liberty), and is widely used with resistant transgenic crops including corn, cotton and canola. Recent genetic and biochemical studies showed that during phosphinothricin tripeptide biosynthesis 2-hydroxyethylphosphonate (HEP) is converted to hydroxymethylphosphonate (HMP). Here we report the in vitro reconstitution of this unprecedented C(sp3)–C(sp3) bond cleavage reaction and X-ray crystal structures of the enzyme. The protein is a mononuclear non-haem iron(ii)-dependent dioxygenase that converts HEP to HMP and formate. In contrast to most other members of this family, the oxidative consumption of HEP does not require additional cofactors or the input of exogenous electrons. The current study expands the scope of reactions catalysed by the 2-His–1-carboxylate mononuclear non-haem iron family of enzymes.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Mutations that stabilize the open state of the Erwinia chrisanthemi ligand-gated ion channel fail to change the conformation of the pore domain in crystals

Giovanni Gonzalez-Gutierrez; Tiit Lukk; Vinayak Agarwal; David Papke; Satish K. Nair; Claudio Grosman

The determination of structural models of the various stable states of an ion channel is a key step toward the characterization of its conformational dynamics. In the case of nicotinic-type receptors, different structures have been solved but, thus far, these different models have been obtained from different members of the superfamily. In the case of the bacterial member ELIC, a cysteamine-gated channel from Erwinia chrisanthemi, a structural model of the protein in the absence of activating ligand (and thus, conceivably corresponding to the closed state of this channel) has been previously generated. In this article, electrophysiological characterization of ELIC mutants allowed us to identify pore mutations that slow down the time course of desensitization to the extent that the channel seems not to desensitize at all for the duration of the agonist applications (>20 min). Thus, it seems reasonable to conclude that the probability of ELIC occupying the closed state is much lower for the ligand-bound mutants than for the unliganded wild-type channel. To gain insight into the conformation adopted by ELIC under these conditions, we solved the crystal structures of two of these mutants in the presence of a concentration of cysteamine that elicits an intracluster open probability of >0.9. Curiously, the obtained structural models turned out to be nearly indistinguishable from the model of the wild-type channel in the absence of bound agonist. Overall, our findings bring to light the limited power of functional studies in intact membranes when it comes to inferring the functional state of a channel in a crystal, at least in the case of the nicotinic-receptor superfamily.


Proceedings of the National Academy of Sciences of the United States of America | 2008

In vitro reconstitution and crystal structure of p-aminobenzoate N-oxygenase (AurF) involved in aureothin biosynthesis

Yoo Seong Choi; Houjin Zhang; Joseph S. Brunzelle; Satish K. Nair; Huimin Zhao

p-aminobenzoate N-oxygenase (AurF) from Streptomyces thioluteus catalyzes the formation of unusual polyketide synthase starter unit p-nitrobenzoic acid (pNBA) from p-aminobenzoic acid (pABA) in the biosynthesis of antibiotic aureothin. AurF is a metalloenzyme, but its native enzymatic activity has not been demonstrated in vitro, and its catalytic mechanism is unclear. In addition, the nature of the cofactor remains a controversy. Here, we report the in vitro reconstitution of the AurF enzyme activity, the crystal structure of AurF in the oxidized state, and the cocrystal structure of AurF with its product pNBA. Our combined biochemical and structural analysis unequivocally indicates that AurF is a non-heme di-iron monooxygenase that catalyzes sequential oxidation of aminoarenes to nitroarenes via hydroxylamine and nitroso intermediates.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Lantibiotics from Geobacillus thermodenitrificans

Neha Garg; Weixin Tang; Yuki Goto; Satish K. Nair; Wilfred A. van der Donk

The lantibiotic nisin has been used as an effective food preservative to combat food-borne pathogens for over 40 y. Despite this successful use, nisin’s stability at pH 7 is limited. Herein, we describe a nisin analog encoded on the genome of the thermophilic bacterium Geobacillus thermodenitrificans NG80-2. This analog termed geobacillin I was obtained by heterologous expression in Escherichia coli and subsequent purification. Extensive NMR characterization demonstrated that geobacillin I contains seven thioether cross-links, two more than the five cross-links found in nisin and the most cross-links found in any lantibiotic to date. The antimicrobial spectrum of geobacillin I was generally similar to that of nisin A, with increased activity against Streptococcus dysgalactiae, one of the causative agents of bovine mastitis. Geobacillin I demonstrated increased stability compared to nisin A. In addition to geobacillin I, the genome of G. thermodenitrificans NG80-2 also contains a class II lantibiotic biosynthetic gene cluster. The corresponding compound was produced in E. coli, and has a ring topology different than that of any known lantibiotic as determined by tandem mass spectrometry. Interestingly, geobacillin II only demonstrated antimicrobial activity against Bacillus strains. Seven Geobacillus strains were screened for production of the geobacillins using whole-cell MALDI-MS and five were shown to produce geobacillin I, but none produced geobacillin II.


Protein Science | 2012

Quorum sensing: How bacteria can coordinate activity and synchronize their response to external signals?

Zhi Li; Satish K. Nair

Quorum sensing is used by a large variety of bacteria to regulate gene expression in a cell‐density‐dependent manner. Bacteria can synchronize population behavior using small molecules called autoinducers that are produced by cognate synthases and recognized by specific receptors. Quorum sensing plays critical roles in regulating diverse cellular functions in bacteria, including bioluminescence, virulence gene expression, biofilm formation, and antibiotic resistance. The best‐studied autoinducers are acyl homoserine lactone (AHL) molecules, which are the primary quorum sensing signals used by Gram‐negative bacteria. In this review we focus on the AHL‐dependent quorum sensing system and highlight recent progress on structural and mechanistic studies of AHL synthases and the corresponding receptors. Crystal structures of LuxI‐type AHL synthases provide insights into acyl‐substrate specificity, but the current knowledge is still greatly limited. Structural studies of AHL receptors have facilitated a more thorough understanding of signal perception and established the molecular framework for the development of quorum sensing inhibitors.

Collaboration


Dive into the Satish K. Nair's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Konstantin Severinov

Skolkovo Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge