Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Satish Mistry is active.

Publication


Featured researches published by Satish Mistry.


Gastroenterology | 2010

Adjunctive functional pharyngeal electrical stimulation reverses swallowing disability after brain lesions.

Vanoo Jayasekeran; Salil Singh; Pippa Tyrrell; Emilia Michou; Samantha Jefferson; Satish Mistry; E. D. Gamble; John C. Rothwell; David G. Thompson; Shaheen Hamdy

BACKGROUND & AIMS Oropharyngeal dysphagia is an important disability that occurs after stroke; it contributes to aspiration pneumonia and death, and current modalities for rehabilitation of dysphagia have uncertain efficacy. We therefore examined the role of pharyngeal electrical stimulation (PES) in expediting human swallowing recovery after experimental (virtual) and actual (stroke) brain lesions. METHODS First, healthy subjects (n = 13) were given 1-Hz repetitive transcranial magnetic stimulation to induce a unilateral virtual lesion in pharyngeal motor cortex followed by active or sham (control) PES. Motor-evoked potentials and swallow accuracy were recorded before and after the lesion to assess PES response. Thereafter, 50 acute dysphagic stroke patients underwent either a dose-response study, to determine optimal parameters for PES (n = 22), or were assigned randomly to groups given either active or sham (control) PES (n = 28). The primary end point was the reduction of airway aspiration at 2 weeks postintervention. RESULTS In contrast to sham PES, active PES reversed the cortical suppression induced by the virtual lesion (F(7,70) = 2.7; P = .015) and was associated with improvement in swallowing behavior (F(3,42) = 5; P = .02). After stroke, 1 PES treatment each day (U = 8.0; P = .043) for 3 days (U = 10.0) produced improved airway protection compared with controls (P = .038). Active PES also reduced aspiration (U = 54.0; P = .049), improved feeding status (U = 58.0; P = .040), and resulted in a shorter time to hospital discharge (Mantel-Cox log-rank test, P = 0.038). CONCLUSIONS This pilot study of PES confirms that it is a safe neurostimulation intervention that reverses swallowing disability after virtual lesion or stroke.


The Journal of Physiology | 2007

Unilateral suppression of pharyngeal motor cortex to repetitive transcranial magnetic stimulation reveals functional asymmetry in the hemispheric projections to human swallowing

Satish Mistry; Eric Verin; Salil Singh; Samantha Jefferson; John C. Rothwell; David G. Thompson; Shaheen Hamdy

Inhibitory patterns of repetitive transcranial magnetic stimulation (rTMS) were applied to pharyngeal motor cortex in order to establish its role in modulating swallowing activity and provide evidence for functionally relevant hemispheric asymmetry. Healthy volunteers underwent single pulse TMS before and for 60 min after differing intensities of 1 Hz rTMS (n= 9, 6 male, 3 female, mean age 34 ± 3 years) or theta burst stimulation (TBS) (n= 9, 6 male, 3 female, mean age 37 ± 4 years). Electromyographic responses recorded from pharynx and hand were used as a measure of cortico‐motor pathway excitability. Swallowing behaviour was then examined with a reaction time protocol, before and for up to 60 min after the most effective inhibitory protocol (1 Hz) applied to each hemisphere. Interventions were conducted on separate days and compared to sham using ANOVA. Only high intensity 1 Hz rTMS consistently suppressed pharyngeal motor cortex immediately and for up to 45 min (−34 ± 7%, P≤ 0.001). Adjacent hand and contralateral pharyngeal motor cortex showed no change in response (−15 ± 12%, P= 0.14 and 15 ± 12%, P= 0.45, respectively). When used to unilaterally disrupt each hemisphere, rTMS to pharyngeal motor cortex with the stronger responses altered normal (−12 ± 3%, P≤ 0.001) and fast (−9 ± 4%, P≤ 0.009) swallow times, not seen following rTMS to the contralateral cortex or after sham. Thus, suppression of pharyngeal motor cortex to rTMS is intensity and frequency dependent, which when applied to each hemisphere reveals functionally relevant asymmetry in the motor control of human swallowing.


Gastroenterology | 2012

Targeting Unlesioned Pharyngeal Motor Cortex Improves Swallowing in Healthy Individuals and After Dysphagic Stroke

Emilia Michou; Satish Mistry; Samantha Jefferson; Salil Singh; John C. Rothwell; Shaheen Hamdy

BACKGROUND & AIMS Patients with stroke experience swallowing problems (dysphagia); increased risk of aspiration pneumonia, malnutrition, and dehydration; and have increased mortality. We investigated the behavioral and neurophysiological effects of a new neurostimulation technique (paired associative stimulation [PAS]), applied to the pharyngeal motor cortex, on swallowing function in healthy individuals and patients with dysphagia from stroke. METHODS We examined the optimal parameters of PAS to promote plasticity by combining peripheral pharyngeal (electrical) with cortical stimulation. A virtual lesion was used as an experimental model of stroke, created with 1-Hz repetitive transcranial magnetic stimulation over the pharyngeal cortex in 12 healthy individuals. We tested whether hemispheric targeting of PAS altered swallowing performance before applying the technique to 6 patients with severe, chronic dysphagia from stroke (mean of 38.8 ± 24.4 weeks poststroke). RESULTS Ten minutes of PAS to the unlesioned pharyngeal cortex reversed (bilaterally) the cortical suppression induced by virtual lesion (lesioned: F(1,9) = 21.347, P = .001; contralesional: F(1,9) = 9.648, P = .013; repeated-measures analysis of variance) compared with sham PAS. It promoted changes in behavior responses measured with a swallowing reaction time task (F(1,7) = 21.02, P = .003; repeated-measures analysis of variance). In patients with chronic dysphagia, real PAS induced short-term bilateral changes in the brain; the unaffected pharyngeal cortex had increased excitability (P = .001; 95% confidence interval, 0.21-0.05; post hoc paired t test) with reduced penetration-aspiration scores and changes in swallowing biomechanics determined by videofluoroscopy. CONCLUSIONS The beneficial neurophysiological and behavioral properties of PAS, when applied to unlesioned brain, provide the foundation for further investigation into the use of neurostimulation as a rehabilitative approach for patients with dysphagia from stroke.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2009

Characterizing the application of transcranial direct current stimulation in human pharyngeal motor cortex

Samantha Jefferson; Satish Mistry; Salil Singh; John C. Rothwell; Shaheen Hamdy

Transcranial direct current stimulation (tDCS) is a novel intervention that can modulate brain excitability in health and disease; however, little is known about its effects on bilaterally innervated systems such as pharyngeal motor cortex. Here, we assess the effects of differing doses of tDCS on the physiology of healthy human pharyngeal motor cortex as a prelude to designing a therapeutic intervention in dysphagic patients. Healthy subjects (n = 17) underwent seven regimens of tDCS (anodal 10 min 1 mA, cathodal 10 min 1 mA, anodal 10 min 1.5 mA, cathodal 10 min 1.5 mA, anodal 20 min 1 mA, cathodal 20 min 1 mA, Sham) on separate days, in a double blind randomized order. Bihemispheric motor evoked potential (MEP) responses to single-pulse transcranial magnetic stimulation (TMS) as well as intracortical facilitation (ICF) and inhibition (ICI) were recorded using a swallowed pharyngeal catheter before and up to 60 min following the tDCS. Compared with sham, both 10 min 1.5 mA and 20 min 1 mA anodal stimulation induced increases in cortical excitability in the stimulated hemisphere (+44 +/- 17% and +59 +/- 16%, respectively; P < 0.005) whereas only 10 min 1.5 mA cathodal stimulation induced inhibition (-26 +/- 4%, P = 0.02). There were neither contralateral hemisphere changes nor any evidence for ICI or ICF in driving the ipsilateral effects. In conclusion, anodal tDCS can alter pharyngeal motor cortex excitability in an intensity-dependent manner, with little evidence for transcallosal spread. Anodal stimulation may therefore provide a useful means of stimulating pharyngeal cortex and promoting recovery in dysphagic patients.


Physical Medicine and Rehabilitation Clinics of North America | 2008

Neural Control of Feeding and Swallowing

Satish Mistry; Shaheen Hamdy

Eating and drinking are basic pleasures in life that most of us take for granted, yet the ease with which we perform these tasks belies their complex neurologic system of control. Recent studies of human swallowing have begun to unravel some of these complexities, evolving our understanding and thus ultimately helping to generate novel therapies for the treatment of swallowing problems after cerebral injury, such as stroke. This article provides a general overview of current knowledge of the neural control mechanisms that underlie the coordination of mastication, oral transport, swallowing, and respiration in humans.


Brain Stimulation | 2014

Characterizing the Mechanisms of Central and Peripheral Forms of Neurostimulation in Chronic Dysphagic Stroke Patients

Emilia Michou; Satish Mistry; Samantha Jefferson; Philippa Tyrrell; Shaheen Hamdy

Background Swallowing problems following stroke may result in increased risk of aspiration pneumonia, malnutrition, and dehydration. Objective/hypothesis Our hypothesis was that three neurostimulation techniques would produce beneficial effects on chronic dysphagia following stroke through a common brain mechanism that would predict behavioral response. Methods In 18 dysphagic stroke patients (mean age: 66 ± 3 years, 3 female, time-post-stroke: 63 ± 15 weeks [±SD]), pharyngeal electromyographic responses were recorded after single-pulse transcranial magnetic stimulation (TMS) over the pharyngeal motor cortex, to measure corticobulbar excitability before, immediately, and 30 min, after real and sham applications of neurostimulation. Patients were randomized to a single session of either: pharyngeal electrical stimulation (PES), paired associative stimulation (PAS) or repetitive TMS (rTMS). Penetration-aspiration scores and bolus transfer timings were assessed before and after both real and sham interventions using videofluoroscopy. Results Corticobulbar excitability of pharyngeal motor cortex was beneficially modulated by PES, PAS and to a lesser extent by rTMS, with functionally relevant changes in the unaffected hemisphere. Following combining the results of real neurostimulation, an overall increase in corticobulbar excitability in the unaffected hemisphere (P = .005, F1,17 = 10.6, ANOVA) with an associated 15% reduction in aspiration (P = .005, z = −2.79) was observed compared to sham. Conclusions In this mechanistic study, an increase in corticobulbar excitability the unaffected projection was correlated with the improvement in swallowing safety (P = .001, rho = −.732), but modality-specific differences were observed. Paradigms providing peripheral input favored change in neurophysiological and behavioral outcome measures in chronic dysphagia patients. Further larger cohort studies of neurostimulation in chronic dysphagic stroke are imperative.


Chemical Senses | 2012

Examining the Role of Carbonation and Temperature on Water Swallowing Performance: A Swallowing Reaction-Time Study

Emilia Michou; Aliya Mastan; Saira Ahmed; Satish Mistry; Shaheen Hamdy

Various therapeutic approaches for dysphagia management are based on modifications of bolus properties to change swallowing biomechanics and increase swallowing safety. Limited evidence exists for the effects of carbonation and bolus temperature on swallowing behavior. Here, we investigated the effects of carbonation and temperature on swallowing behavior using a novel automated and complex swallowing reaction time task via pressure signal recordings in the hypopharynx. Healthy participants (n = 39, 27.7±5 years old) were randomized in two different experiments and asked to perform 10 normal-paced swallows, 10 fast-paced swallows, and 10 challenged swallows within a predetermined time-window of carbonated versus still water (experiment 1) and of cold (4 °C) versus hot (45 °C) versus room temperature (21 °C) water (experiment 2). Quantitative measurements of latencies and percentage of successful challenged swallows were collected and analyzed nonparametrically. An increase in successfully performed challenged swallowing task was observed with carbonated water versus still water (P = 0.021), whereas only cold water shortened the latencies of normally paced swallows compared with room (P = 0.001) and hot (P = 0.004) temperatures. Therefore, it appears that chemothermal stimulation with carbonation and cold are most effective at modulating water swallowing, which in part is likely to be driven by central swallowing afferent activity.


Gastroenterology | 2009

A Magnetic Resonance Spectroscopy Study of Brain Glutamate in a Model of Plasticity in Human Pharyngeal Motor Cortex

Salil Singh; Satish Mistry; Samantha Jefferson; Karen Davies; John C. Rothwell; Stephen R. Williams; Shaheen Hamdy

BACKGROUND & AIMS Coordinated delivery of peripheral and cortical stimuli (paired associative stimulation [PAS]) has been shown to induce plasticity in limb motor cortex, however, its application in pharyngeal motor cortex and the molecular mechanisms involved in human neuroplasticity remain uncertain. Because neuroplasticity appears to form the basis for functional recovery of digestive functions such as swallowing after brain injury, the aim of this study was to characterize the induction of cortical plasticity in human pharyngeal motor cortex through PAS applied to pharyngeal musculature and investigate the potential role of glutamate in this process. METHODS Fifteen healthy volunteers completed a series of experiments in which cortical excitability was assessed through pharyngeal motor evoked potential amplitudes in response to transcranial magnetic stimulation. The optimal parameters and interhemispheric interactions of PAS in the bilaterally represented pharyngeal system initially were investigated. Cortical glutamate after PAS then was assessed with magnetic resonance spectroscopy. RESULTS The greatest increase in cortical pharyngeal excitability was seen if paired stimuli were separated by 100 ms (F[15,210] = 2.28; P < or = .05). Cortical excitability increased over 2 hours with analogous albeit lesser changes in the contralateral hemisphere. A focal and transient reduction in glutamate was found in the stimulated pharyngeal motor cortex (F[1,12] = 21.9; P = .001), without changes in any other measured brain metabolites. CONCLUSIONS This study shows that PAS-induced plasticity in the human pharyngeal motor system is both timing- and hemisphere-dependent and provides novel evidence for the potential role of glutamate in modulating this effect.


The Journal of Physiology | 2014

Transcranial direct current stimulation reverses neurophysiological and behavioural effects of focal inhibition of human pharyngeal motor cortex on swallowing

Dipesh H. Vasant; Satish Mistry; Emilia Michou; Samantha Jefferson; John C. Rothwell; Shaheen Hamdy

Cortical control of swallowing exhibits functional asymmetry with brain lesions involving the strongest projection being implicated in the pathophysiology of dysphagia after unilateral stroke. Swallowing recovery is associated with neuroplastic adaptation in the unlesioned hemisphere, a process which can be facilitated by excitatory neurostimulation techniques including transcranial direct current stimulation (tDCS). Unilateral suppression of the strongest pharyngeal motor projection using 1 Hz repetitive transcranial magnetic stimulation (rTMS) can disrupt swallowing neurophysiology and behaviour making it a useful model for trialling novel neurostimulation interventions in healthy subjects. In this healthy participant study we examined the effects of tDCS after unilateral pre‐conditioning with 1 Hz rTMS to determine its ability to restore swallowing neurophysiology and behaviour. We show that application of optimised parameters of tDCS (anodal stimulation, 1.5 mA, 10 min) over the unconditioned hemisphere reverses the brain and behavioural consequences of inhibitory pre‐conditioning, supporting the use of tDCS in clinical trials.


Neurorehabilitation and Neural Repair | 2013

Priming Pharyngeal Motor Cortex by Repeated Paired Associative Stimulation Implications for Dysphagia Neurorehabilitation

Emilia Michou; Satish Mistry; John C. Rothwell; Shaheen Hamdy

Background. Several stimulation parameters can influence the neurophysiological and behavioral effects of paired associative stimulation (PAS), a neurostimulation paradigm that repeatedly pairs a peripheral electrical with a central cortical (transcranial magnetic stimulation [TMS]) stimulus. This also appears to be the case when PAS is applied to the pharyngeal motor cortex (MI), with some variability in excitatory responses, questioning its translation into a useful therapy for patients with brain injury. Objective. To investigate whether repeated PAS in both “responders” and “nonresponders” could enhance cortical excitability in pharyngeal MI more robustly. Methods. Based on their responses after single PAS, healthy participants were stratified into 2 groups of “responders” and “nonresponders” and underwent 2 periods (60 minutes inter-PAS interval) of active and sham PAS in a randomized order. Neurophysiological measurements with single TMS pulses from pharyngeal motor representation were collected up to 90 minutes after the second PAS period. Results. Repeated PAS increased cortical excitability up to 95% at 60 minutes following the second PAS in both the “responders” and “nonresponders.” Moreover, cortical excitability in the “nonresponders” was significantly different after repeated PAS compared with single and sham application (P = .02; z = −2.2). Conclusions. Double dose PAS switched “nonresponders” to “responders.” These results are important for PAS application to dysphagic stroke patients who do not initially respond to a single application.

Collaboration


Dive into the Satish Mistry's collaboration.

Top Co-Authors

Avatar

Shaheen Hamdy

University of Manchester

View shared research outputs
Top Co-Authors

Avatar

Emilia Michou

University of Manchester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Salil Singh

University of Manchester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge