Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Satish Viswanath is active.

Publication


Featured researches published by Satish Viswanath.


Journal of Magnetic Resonance Imaging | 2012

Central gland and peripheral zone prostate tumors have significantly different quantitative imaging signatures on 3 tesla endorectal, in vivo T2-weighted MR imagery

Satish Viswanath; Nicholas B. Bloch; Jonathan Chappelow; Robert Toth; Neil M. Rofsky; Elizabeth M. Genega; Robert E. Lenkinski; Anant Madabhushi

To identify and evaluate textural quantitative imaging signatures (QISes) for tumors occurring within the central gland (CG) and peripheral zone (PZ) of the prostate, respectively, as seen on in vivo 3 Tesla (T) endorectal T2‐weighted (T2w) MRI.


NMR in Biomedicine | 2012

Multimodal wavelet embedding representation for data combination (MaWERiC): integrating magnetic resonance imaging and spectroscopy for prostate cancer detection

Pallavi Tiwari; Satish Viswanath; John Kurhanewicz; Akshay Sridhar; Anant Madabhushi

Recently, both Magnetic Resonance (MR) Imaging (MRI) and Spectroscopy (MRS) have emerged as promising tools for detection of prostate cancer (CaP). However, due to the inherent dimensionality differences in MR imaging and spectral information, quantitative integration of T2 weighted MRI (T2w MRI) and MRS for improved CaP detection has been a major challenge. In this paper, we present a novel computerized decision support system called multimodal wavelet embedding representation for data combination (MaWERiC) that employs, (i) wavelet theory to extract 171 Haar wavelet features from MRS and 54 Gabor features from T2w MRI, (ii) dimensionality reduction to individually project wavelet features from MRS and T2w MRI into a common reduced Eigen vector space, and (iii), a random forest classifier for automated prostate cancer detection on a per voxel basis from combined 1.5 T in vivo MRI and MRS. A total of 36 1.5 T endorectal in vivo T2w MRI and MRS patient studies were evaluated per voxel by MaWERiC using a three‐fold cross validation approach over 25 iterations. Ground truth for evaluation of results was obtained by an expert radiologist annotations of prostate cancer on a per voxel basis who compared each MRI section with corresponding ex vivo wholemount histology sections with the disease extent mapped out on histology. Results suggest that MaWERiC based MRS T2w meta‐classifier (mean AUC, μ = 0.89 ± 0.02) significantly outperformed (i) a T2w MRI (using wavelet texture features) classifier (μ = 0.55 ± 0.02), (ii) a MRS (using metabolite ratios) classifier (μ = 0.77 ± 0.03), (iii) a decision fusion classifier obtained by combining individual T2w MRI and MRS classifier outputs (μ = 0.85 ± 0.03), and (iv) a data combination method involving a combination of metabolic MRS and MR signal intensity features (μ = 0.66 ± 0.02). Copyright


Proceedings of SPIE | 2009

Integrating Structural and Functional Imaging for Computer Assisted Detection of Prostate Cancer on Multi-Protocol In Vivo 3 Tesla MRI

Satish Viswanath; B. Nicolas Bloch; Mark A. Rosen; Jonathan Chappelow; Robert Toth; Neil M. Rofsky; Robert E. Lenkinski; Elizabeth M. Genega; Arjun Kalyanpur; Anant Madabhushi

Screening and detection of prostate cancer (CaP) currently lacks an image-based protocol which is reflected in the high false negative rates currently associated with blinded sextant biopsies. Multi-protocol magnetic resonance imaging (MRI) offers high resolution functional and structural data about internal body structures (such as the prostate). In this paper we present a novel comprehensive computer-aided scheme for CaP detection from high resolution in vivo multi-protocol MRI by integrating functional and structural information obtained via dynamic-contrast enhanced (DCE) and T2-weighted (T2-w) MRI, respectively. Our scheme is fully-automated and comprises (a) prostate segmentation, (b) multimodal image registration, and (c) data representation and multi-classifier modules for information fusion. Following prostate boundary segmentation via an improved active shape model, the DCE/T2-w protocols and the T2-w/ex vivo histological prostatectomy specimens are brought into alignment via a deformable, multi-attribute registration scheme. T2-w/histology alignment allows for the mapping of true CaP extent onto the in vivo MRI, which is used for training and evaluation of a multi-protocol MRI CaP classifier. The meta-classifier used is a random forest constructed by bagging multiple decision tree classifiers, each trained individually on T2-w structural, textural and DCE functional attributes. 3-fold classifier cross validation was performed using a set of 18 images derived from 6 patient datasets on a per-pixel basis. Our results show that the results of CaP detection obtained from integration of T2-w structural textural data and DCE functional data (area under the ROC curve of 0.815) significantly outperforms detection based on either of the individual modalities (0.704 (T2-w) and 0.682 (DCE)). It was also found that a meta-classifier trained directly on integrated T2-w and DCE data (data-level integration) significantly outperformed a decision-level meta-classifier, constructed by combining the classifier outputs from the individual T2-w and DCE channels.


medical image computing and computer assisted intervention | 2008

A Comprehensive Segmentation, Registration, and Cancer Detection Scheme on 3 Tesla In Vivo Prostate DCE-MRI

Satish Viswanath; B. Nicolas Bloch; Elizabeth M. Genega; Neil M. Rofsky; Robert E. Lenkinski; Jonathan Chappelow; Robert Toth; Anant Madabhushi

Recently, high resolution 3 Tesla (T) Dynamic Contrast-Enhanced MRI (DCE-MRI) of the prostate has emerged as a promising modality for detecting prostate cancer (CaP). Computer-aided diagnosis (CAD) schemes for DCE-MRI data have thus far been primarily developed for breast cancer and typically involve model fitting of dynamic intensity changes as a function of contrast agent uptake by the lesion. Comparatively there is relatively little work in developing CAD schemes for prostate DCE-MRI. In this paper, we present a novel unsupervised detection scheme for CaP from 3 T DCE-MRI which comprises 3 distinct steps. First, a multi-attribute active shape model is used to automatically segment the prostate boundary from 3 T in vivo MR imagery. A robust multimodal registration scheme is then used to non-linearly align corresponding whole mount histological and DCE-MRI sections from prostatectomy specimens to determine the spatial extent of CaP. Non-linear dimensionality reduction schemes such as locally linear embedding (LLE) have been previously shown to be useful in projecting such high dimensional biomedical data into a lower dimensional subspace while preserving the non-linear geometry of the data manifold. DCE-MRI data is embedded via LLE and then classified via unsupervised consensus clustering to identify distinct classes. Quantitative evaluation on 21 histology-MRI slice pairs against registered CaP ground truth estimates yielded a maximum CaP detection accuracy of 77.20% while the popular three time point (3TP) scheme yielded an accuracy of 67.37%.


Translational Oncology | 2016

Radiomics Analysis on FLT-PET/MRI for Characterization of Early Treatment Response in Renal Cell Carcinoma: A Proof-of-Concept Study

Jacob Antunes; Satish Viswanath; Mirabela Rusu; Laia Valls; Christopher J. Hoimes; Norbert Avril; Anant Madabhushi

Studying early response to cancer treatment is significant for patient treatment stratification and follow-up. Although recent advances in positron emission tomography (PET) and magnetic resonance imaging (MRI) allow for evaluation of tumor response, a quantitative objective assessment of treatment-related effects offers localization and quantification of structural and functional changes in the tumor region. Radiomics, the process of computerized extraction of features from radiographic images, is a new strategy for capturing subtle changes in the tumor region that works by quantifying subvisual patterns which might escape human identification. The goal of this study was to demonstrate feasibility for performing radiomics analysis on integrated PET/MRI to characterize early treatment response in metastatic renal cell carcinoma (RCC) undergoing sunitinib therapy. Two patients with advanced RCC were imaged using an integrated PET/MRI scanner. [18 F] fluorothymidine (FLT) was used as the PET radiotracer, which can measure the degree of cell proliferation. Image acquisitions included test/retest scans before sunitinib treatment and one scan 3 weeks into treatment using [18 F] FLT-PET, T2-weighted (T2w), and diffusion-weighted imaging (DWI) protocols, where DWI yielded an apparent diffusion coefficient (ADC) map. Our framework to quantitatively characterize treatment-related changes involved the following analytic steps: 1) intraacquisition and interacquisition registration of protocols to allow voxel-wise comparison of changes in radiomic features, 2) correction and pseudoquantification of T2w images to remove acquisition artifacts and examine tissue-specific response, 3) characterization of information captured by T2w MRI, FLT-PET, and ADC via radiomics, and 4) combining multiparametric information to create a map of integrated changes from PET/MRI radiomic features. Standardized uptake value (from FLT-PET) and ADC textures ranked highest for reproducibility in a test/retest evaluation as well as for capturing treatment response, in comparison to high variability seen in T2w MRI. The highest-ranked radiomic feature yielded a normalized percentage change of 63% within the RCC region and 17% in a spatially distinct normal region relative to its pretreatment value. By comparison, both the original and postprocessed T2w signal intensity appeared to be markedly less sensitive and specific to changes within the tumor. Our preliminary results thus suggest that radiomics analysis could be a powerful tool for characterizing treatment response in integrated PET/MRI.


Journal of Magnetic Resonance Imaging | 2015

Novel PCA‐VIP scheme for ranking MRI protocols and identifying computer‐extracted MRI measurements associated with central gland and peripheral zone prostate tumors

Shoshana B. Ginsburg; Satish Viswanath; B. Nicolas Bloch; Neil M. Rofsky; Elizabeth M. Genega; Robert E. Lenkinski; Anant Madabhushi

To identify computer‐extracted features for central gland and peripheral zone prostate cancer localization on multiparametric magnetic resonance imaging (MRI).


international symposium on biomedical imaging | 2011

Multi-modal data fusion schemes for integrated classification of imaging and non-imaging biomedical data

Pallavi Tiwari; Satish Viswanath; George Lee; Anant Madabhushi

With a wide array of multi-modal, multi-protocol, and multi-scale biomedical data available for disease diagnosis and prognosis, there is a need for quantitative tools to combine such varied channels of information, especially imaging and non-imaging data (e.g. spectroscopy, proteomics). The major problem in such quantitative data integration lies in reconciling the large spread in the range of dimensionalities and scales across the different modalities. The primary goal of quantitative data integration is to build combined meta-classifiers; however these efforts are thwarted by challenges in (1) homogeneous representation of the data channels, (2) fusing the attributes to construct an integrated feature vector, and (3) the choice of learning strategy for training the integrated classifier. In this paper, we seek to (a) define the characteristics that guide the 4 independent methods for quantitative data fusion that use the idea of a meta-space for building integrated multi-modal, multi-scale meta-classifiers, and (b) attempt to understand the key components which allowed each method to succeed. These methods include (1) Generalized Embedding Concatenation (GEC), (2) Consensus Embedding (CE), (3) Semi-Supervised Multi-Kernel Graph Embedding (SeSMiK), and (4) Boosted Embedding Combination (BEC). In order to evaluate the optimal scheme for fusing imaging and non-imaging data, we compared these 4 schemes for the problems of combining (a) multi-parametric MRI with spectroscopy for prostate cancer (CaP) diagnosis in vivo, and (b) histological image with proteomic signatures (obtained via mass spectrometry) for predicting prognosis in CaP patients. The kernel combination approach (SeSMiK) marginally outperformed the embedding combination schemes. Additionally, intelligent weighting of the data channels (based on their relative importance) appeared to outperform unweighted strategies. All 4 strategies easily outperformed a naïve decision fusion approach, suggesting that data integration methods will play an important role in the rapidly emerging field of integrated diagnostics and personalized healthcare.


BMC Bioinformatics | 2012

Consensus embedding: theory, algorithms and application to segmentation and classification of biomedical data.

Satish Viswanath; Anant Madabhushi

BackgroundDimensionality reduction (DR) enables the construction of a lower dimensional space (embedding) from a higher dimensional feature space while preserving object-class discriminability. However several popular DR approaches suffer from sensitivity to choice of parameters and/or presence of noise in the data. In this paper, we present a novel DR technique known as consensus embedding that aims to overcome these problems by generating and combining multiple low-dimensional embeddings, hence exploiting the variance among them in a manner similar to ensemble classifier schemes such as Bagging. We demonstrate theoretical properties of consensus embedding which show that it will result in a single stable embedding solution that preserves information more accurately as compared to any individual embedding (generated via DR schemes such as Principal Component Analysis, Graph Embedding, or Locally Linear Embedding). Intelligent sub-sampling (via mean-shift) and code parallelization are utilized to provide for an efficient implementation of the scheme.ResultsApplications of consensus embedding are shown in the context of classification and clustering as applied to: (1) image partitioning of white matter and gray matter on 10 different synthetic brain MRI images corrupted with 18 different combinations of noise and bias field inhomogeneity, (2) classification of 4 high-dimensional gene-expression datasets, (3) cancer detection (at a pixel-level) on 16 image slices obtained from 2 different high-resolution prostate MRI datasets. In over 200 different experiments concerning classification and segmentation of biomedical data, consensus embedding was found to consistently outperform both linear and non-linear DR methods within all applications considered.ConclusionsWe have presented a novel framework termed consensus embedding which leverages ensemble classification theory within dimensionality reduction, allowing for application to a wide range of high-dimensional biomedical data classification and segmentation problems. Our generalizable framework allows for improved representation and classification in the context of both imaging and non-imaging data. The algorithm offers a promising solution to problems that currently plague DR methods, and may allow for extension to other areas of biomedical data analysis.


Proceedings of SPIE | 2011

Enhanced multi-protocol analysis via intelligent supervised embedding (EMPrAvISE): detecting prostate cancer on multi-parametric MRI

Satish Viswanath; B. Nicolas Bloch; Jonathan Chappelow; Pratik Patel; Neil M. Rofsky; Robert E. Lenkinski; Elizabeth M. Genega; Anant Madabhushi

Currently, there is significant interest in developing methods for quantitative integration of multi-parametric (structural, functional) imaging data with the objective of building automated meta-classifiers to improve disease detection, diagnosis, and prognosis. Such techniques are required to address the differences in dimensionalities and scales of individual protocols, while deriving an integrated multi-parametric data representation which best captures all disease-pertinent information available. In this paper, we present a scheme called Enhanced Multi-Protocol Analysis via Intelligent Supervised Embedding (EMPrAvISE); a powerful, generalizable framework applicable to a variety of domains for multi-parametric data representation and fusion. Our scheme utilizes an ensemble of embeddings (via dimensionality reduction, DR); thereby exploiting the variance amongst multiple uncorrelated embeddings in a manner similar to ensemble classifier schemes (e.g. Bagging, Boosting). We apply this framework to the problem of prostate cancer (CaP) detection on 12 3 Tesla pre-operative in vivo multi-parametric (T2-weighted, Dynamic Contrast Enhanced, and Diffusion-weighted) magnetic resonance imaging (MRI) studies, in turn comprising a total of 39 2D planar MR images. We first align the different imaging protocols via automated image registration, followed by quantification of image attributes from individual protocols. Multiple embeddings are generated from the resultant high-dimensional feature space which are then combined intelligently to yield a single stable solution. Our scheme is employed in conjunction with graph embedding (for DR) and probabilistic boosting trees (PBTs) to detect CaP on multi-parametric MRI. Finally, a probabilistic pairwise Markov Random Field algorithm is used to apply spatial constraints to the result of the PBT classifier, yielding a per-voxel classification of CaP presence. Per-voxel evaluation of detection results against ground truth for CaP extent on MRI (obtained by spatially registering pre-operative MRI with available whole-mount histological specimens) reveals that EMPrAvISE yields a statistically significant improvement (AUC=0.77) over classifiers constructed from individual protocols (AUC=0.62, 0.62, 0.65, for T2w, DCE, DWI respectively) as well as one trained using multi-parametric feature concatenation (AUC=0.67).


Proceedings of SPIE | 2009

COLLINARUS: collection of image-derived non-linear attributes for registration using splines

Jonathan Chappelow; B. Nicolas Bloch; Neil M. Rofsky; Elizabeth M. Genega; Robert E. Lenkinski; William C. DeWolf; Satish Viswanath; Anant Madabhushi

We present a new method for fully automatic non-rigid registration of multimodal imagery, including structural and functional data, that utilizes multiple texutral feature images to drive an automated spline based non-linear image registration procedure. Multimodal image registration is significantly more complicated than registration of images from the same modality or protocol on account of difficulty in quantifying similarity between different structural and functional information, and also due to possible physical deformations resulting from the data acquisition process. The COFEMI technique for feature ensemble selection and combination has been previously demonstrated to improve rigid registration performance over intensity-based MI for images of dissimilar modalities with visible intensity artifacts. Hence, we present here the natural extension of feature ensembles for driving automated non-rigid image registration in our new technique termed Collection of Image-derived Non-linear Attributes for Registration Using Splines (COLLINARUS). Qualitative and quantitative evaluation of the COLLINARUS scheme is performed on several sets of real multimodal prostate images and synthetic multiprotocol brain images. Multimodal (histology and MRI) prostate image registration is performed for 6 clinical data sets comprising a total of 21 groups of in vivo structural (T2-w) MRI, functional dynamic contrast enhanced (DCE) MRI, and ex vivo WMH images with cancer present. Our method determines a non-linear transformation to align WMH with the high resolution in vivo T2-w MRI, followed by mapping of the histopathologic cancer extent onto the T2-w MRI. The cancer extent is then mapped from T2-w MRI onto DCE-MRI using the combined non-rigid and affine transformations determined by the registration. Evaluation of prostate registration is performed by comparison with the 3 time point (3TP) representation of functional DCE data, which provides an independent estimate of cancer extent. The set of synthetic multiprotocol images, acquired from the BrainWeb Simulated Brain Database, comprises 11 pairs of T1-w and proton density (PD) MRI of the brain. Following the application of a known warping to misalign the images, non-rigid registration was then performed to recover the original, correct alignment of each image pair. Quantitative evaluation of brain registration was performed by direct comparison of (1) the recovered deformation field to the applied field and (2) the original undeformed and recovered PD MRI. For each of the data sets, COLLINARUS is compared with the MI-driven counterpart of the B-spline technique. In each of the quantitative experiments, registration accuracy was found to be significantly (p < 0.05) for COLLINARUS compared with MI-driven B-spline registration. Over 11 slices, the mean absolute error in the deformation field recovered by COLLINARUS was found to be 0.8830 mm.

Collaboration


Dive into the Satish Viswanath's collaboration.

Top Co-Authors

Avatar

Anant Madabhushi

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Pallavi Tiwari

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elizabeth M. Genega

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Michael Feldman

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Neil M. Rofsky

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Robert E. Lenkinski

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark A. Rosen

University of Pennsylvania

View shared research outputs
Researchain Logo
Decentralizing Knowledge