Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Satoko Arai is active.

Publication


Featured researches published by Satoko Arai.


Cell Metabolism | 2010

Macrophage-derived AIM Is endocytosed into adipocytes and decreases lipid droplets via inhibition of fatty acid synthase activity

Jun Kurokawa; Satoko Arai; Katsuhiko Nakashima; Hiromichi Nagano; Akemi Nishijima; Keishi Miyata; Rui Ose; Mayumi Mori; Naoto Kubota; Takashi Kadowaki; Yuichi Oike; Hisashi Koga; Maria Febbraio; Toshihiko Iwanaga; Toru Miyazaki

Macrophages infiltrate adipose tissue in obesity and are involved in the induction of inflammation, thereby contributing to the development of obesity-associated metabolic disorders. Here, we show that the macrophage-derived soluble protein AIM is endocytosed into adipocytes via CD36. Within adipocytes, AIM associates with cytosolic fatty acid synthase (FAS), thereby decreasing FAS activity. This decreases lipid droplet size, stimulating the efflux of free fatty acids and glycerol from adipocytes. As an additional consequence of FAS inhibition, AIM prevents preadipocyte maturation. In vivo, the increase in adipocyte size and fat weight induced by high-fat diet (HFD) was accelerated in AIM-deficient (AIM(-)(/-)) mice compared to AIM(+/+) mice. Moreover, injection of recombinant AIM in AIM(-)(/-) mice suppresses the increase in fat mass induced by HFD. Interestingly, metabolic rates are comparable in AIM(-)(/-) and AIM(+/+) mice, suggesting that AIM specifically influences adipocyte status. Thus, this AIM function in adipocytes may be physiologically relevant to obesity progression.


Nature Immunology | 2013

The nuclear receptor LXRα controls the functional specialization of splenic macrophages

Noelia A-Gonzalez; Jose Guillén; Germán Gallardo; Mercedes Diaz; Juan Vladimir De la Rosa; Irene Hernández Hernández; Maria Casanova-Acebes; Felix Lopez; Carlos Tabraue; Susana Beceiro; Cynthia Hong; Pedro C Lara; Miguel Andujar; Satoko Arai; Toru Miyazaki; Senlin Li; Angel L. Corbí; Peter Tontonoz; Andrés Hidalgo; Antonio Castrillo

Macrophages are professional phagocytic cells that orchestrate innate immune responses and have considerable phenotypic diversity at different anatomical locations. However, the mechanisms that control the heterogeneity of tissue macrophages are not well characterized. Here we found that the nuclear receptor LXRα was essential for the differentiation of macrophages in the marginal zone (MZ) of the spleen. LXR-deficient mice were defective in the generation of MZ and metallophilic macrophages, which resulted in abnormal responses to blood-borne antigens. Myeloid-specific expression of LXRα or adoptive transfer of wild-type monocytes restored the MZ microenvironment in LXRα-deficient mice. Our results demonstrate that signaling via LXRα in myeloid cells is crucial for the generation of splenic MZ macrophages and identify an unprecedented role for a nuclear receptor in the generation of specialized macrophage subsets.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Apoptosis inhibitor of macrophage (AIM) is required for obesity-associated recruitment of inflammatory macrophages into adipose tissue

Jun Kurokawa; Hiromichi Nagano; Osamu Ohara; Naoto Kubota; Takashi Kadowaki; Satoko Arai; Toru Miyazaki

Infiltration of inflammatory macrophages into adipose tissues with the progression of obesity triggers insulin resistance and obesity-related metabolic diseases. We recently reported that macrophage-derived apoptosis inhibitor of macrophage (AIM) protein is increased in blood in line with obesity progression and is incorporated into adipocytes, thereby inducing lipolysis in adipose tissue. Here we show that such a response is required for the recruitment of adipose tissue macrophages. In vitro, AIM-dependent lipolysis induced an efflux of palmitic and stearic acids from 3T3-L1 adipocytes, thereby stimulating chemokine production in adipocytes via activation of toll-like receptor 4 (TLR4). In vivo administration of recombinant AIM to TLR4-deficient (TLR4−/−) mice resulted in induction of lipolysis without chemokine production in adipose tissues. Consistently, mRNA levels for the chemokines that affect macrophages were far lower in AIM-deficient (AIM−/−) than in wild-type (AIM+/+) obese adipose tissue. This reduction in chemokine production resulted in a marked prevention of inflammatory macrophage infiltration into adipose tissue in obese AIM−/− mice, although these mice showed more advanced obesity than AIM+/+ mice on a high-fat diet. Diminished macrophage infiltration resulted in decreased inflammation locally and systemically in obese AIM−/− mice, thereby protecting them from insulin resistance and glucose intolerance. These results indicate that the increase in blood AIM is a critical event for the initiation of macrophage recruitment into adipose tissue, which is followed by insulin resistance. Thus, AIM suppression might be therapeutically applicable for the prevention of obesity-related metabolic disorders.


Cell Reports | 2013

Obesity-associated autoantibody production requires AIM to retain the immunoglobulin M immune complex on follicular dendritic cells.

Satoko Arai; Natsumi Maehara; Yoshihiro Iwamura; Shin-ichiro Honda; Katsuhiko Nakashima; Toshihiro Kai; Masato Ogishi; Kumiko Morita; Jun Kurokawa; Mayumi Mori; Yuji Motoi; Kensuke Miyake; Nobuyuki Matsuhashi; Ken Ichi Yamamura; Osamu Ohara; Akira Shibuya; Edward K. Wakeland; Quan Zhen Li; Toru Miyazaki

Natural immunoglobulin M (IgM) is reactive to autoantigens and is believed to be important for autoimmunity. Blood pentameric IgM loaded with antigens forms a large immune complex (IC) that contains various elements, including apoptosis inhibitor of macrophage (AIM). Here we demonstrate that this IgM-AIM association contributes to autoantibody production under obese conditions. In mice fed a high-fat diet, natural IgM increased through B cell TLR4 stimulation. AIM associated with IgM and protected AIM from renal excretion, increasing blood AIM levels along with the obesity-induced IgM augmentation. Meanwhile, the AIM association inhibited IgM binding to the Fcα/μ receptor on splenic follicular dendritic cells, thereby protecting the IgM IC from Fcα/μ receptor-mediated internalization. This supported IgM-dependent autoantigen presentation to B cells, stimulating IgG autoantibody production. Accordingly, in obese AIM-deficient (AIM(-/-)) mice, the increase of multiple IgG autoantibodies observed in obese wild-type mice was abrogated. Thus, the AIM-IgM association plays a critical role in the obesity-associated autoimmune process.


Cell Cycle | 2007

Two Distinct Controls of Mitotic Cdk1/Cyclin B1 Activity Requisite for Cell Growth Prior to Cell Division

Toru Miyazaki; Satoko Arai

Cell growth prior to cell division is restricted by the activity of cyclin-dependent kinase 1 (Cdk1)/cyclin B1 complexes. Recently, we identified that the death-effector domain (DED) containing protein, DEDD, acts as a novel inhibitor of mitotic Cdk1/cyclin B1, influencing cell size. Like cyclin B1, DEDD protein levels specifically peak during the G2/M phase. In the nucleus, DEDD associates with Cdk1/cyclin B1 complexes, via direct binding to cyclin B1, and reduces their function. In agreement, kinase activity of nuclear Cdk1/cyclin B1 in DEDD-null (DEDD-/-) embryonic fibroblasts is increased compared to that in DEDD+/+ cells. This accelerates mitotic progression in DEDD-/- cells, with a shortened G2/M phase, reduced rRNA, and diminished cell volume. Likewise, DEDD-/- mice show decreased body and organ weights relative to DEDD+/+ mice. Interestingly, the DED domain is not involved in the association of DEDD with Cdk1/cyclin B1, but is indispensable for the cell sizing function of DEDD. Together, in addition to the well-established machinery for activation of Cdk1 through dephosphorylation of its inhibitory-residues, we propose a novel mechanism for impeditive regulation of mitotic Cdk1/cyclin B1 mediated by DEDD within the nucleus, which allows sufficient cell growth prior to cell division.


Nature Medicine | 2016

Apoptosis inhibitor of macrophage protein enhances intraluminal debris clearance and ameliorates acute kidney injury in mice

Satoko Arai; Kento Kitada; Tomoko Yamazaki; Ryosuke Takai; Xizhong Zhang; Yoji Tsugawa; Ryoichi Sugisawa; Ayaka Matsumoto; Mayumi Mori; Yasunori Yoshihara; Kent Doi; Natsumi Maehara; Shunsuke Kusunoki; Akiko Takahata; Eisei Noiri; Yusuke Suzuki; Naoki Yahagi; Akira Nishiyama; Lakshman Gunaratnam; Tomoko Takano; Toru Miyazaki

Acute kidney injury (AKI) is associated with prolonged hospitalization and high mortality, and it predisposes individuals to chronic kidney disease. To date, no effective AKI treatments have been established. Here we show that the apoptosis inhibitor of macrophage (AIM) protein on intraluminal debris interacts with kidney injury molecule (KIM)-1 and promotes recovery from AKI. During AKI, the concentration of AIM increases in the urine, and AIM accumulates on necrotic cell debris within the kidney proximal tubules. The AIM present in this cellular debris binds to KIM-1, which is expressed on injured tubular epithelial cells, and enhances the phagocytic removal of the debris by the epithelial cells, thus contributing to kidney tissue repair. When subjected to ischemia-reperfusion (IR)-induced AKI, AIM-deficient mice exhibited abrogated debris clearance and persistent renal inflammation, resulting in higher mortality than wild-type (WT) mice due to progressive renal dysfunction. Treatment of mice with IR-induced AKI using recombinant AIM resulted in the removal of the debris, thereby ameliorating renal pathology. We observed this effect in both AIM-deficient and WT mice, but not in KIM-1–deficient mice. Our findings provide a basis for the development of potentially novel therapies for AKI.


Journal of Clinical Investigation | 2011

Death effector domain–containing protein (DEDD) is required for uterine decidualization during early pregnancy in mice

Mayumi Mori; Miwako Kitazume; Rui Ose; Jun Kurokawa; Kaori Koga; Yutaka Osuga; Satoko Arai; Toru Miyazaki

During intrauterine life, the mammalian embryo survives via its physical connection to the mother. The uterine decidua, which differentiates from stromal cells after implantation in a process known as decidualization, plays essential roles in supporting embryonic growth before establishment of the placenta. Here we show that female mice lacking death effector domain-containing protein (DEDD) are infertile owing to unsuccessful decidualization. In uteri of Dedd-/- mice, development of the decidual zone and the surrounding edema after embryonic implantation was defective. This was subsequently accompanied by disintegration of implantation site structure, leading to embryonic death before placentation. Polyploidization, a hallmark of mature decidual cells, was attenuated in DEDD-deficient cells during decidualization. Such inefficient decidualization appeared to be caused by decreased Akt levels, since polyploidization was restored in DEDD-deficient decidual cells by overexpression of Akt. In addition, we showed that DEDD associates with and stabilizes cyclin D3, an important element in polyploidization, and that overexpression of cyclin D3 in DEDD-deficient cells improved polyploidization. These results indicate that DEDD is indispensable for the establishment of an adequate uterine environment to support early pregnancy in mice.


Biochemical and Biophysical Research Communications | 2012

Apoptosis inhibitor of macrophage (AIM) diminishes lipid droplet-coating proteins leading to lipolysis in adipocytes

Yoshihiro Iwamura; Mayumi Mori; Katsuhiko Nakashima; Toshiyuki Mikami; Katsuhisa Murayama; Satoko Arai; Toru Miyazaki

Under fasting conditions, triacylglycerol in adipose tissue undergoes lipolysis to supply fatty acids as energy substrates. Such lipolysis is regulated by hormones, which activate lipases via stimulation of specific signalling cascades. We previously showed that macrophage-derived soluble protein, AIM induces obesity-associated lipolysis, triggering chronic inflammation in fat tissue which causes insulin resistance. However, the mechanism of how AIM mediates lipolysis remains unknown. Here we show that AIM induces lipolysis in a manner distinct from that of hormone-dependent lipolysis, without activation or augmentation of lipases. In vivo and in vitro, AIM did not enhance phosphorylation of hormone-sensitive lipase (HSL) in adipocytes, a hallmark of hormone-dependent lipolysis activation. Similarly, adipose tissue from obese AIM-deficient and wild-type mice showed comparable HSL phosphorylation. Consistent with the suppressive effect of AIM on fatty acid synthase activity, the amount of saturated and unsaturated fatty acids was reduced in adipocytes treated with AIM. This response ablated transcriptional activity of peroxisome proliferator-activated receptor (PPARγ), leading to diminished gene expression of lipid-droplet coating proteins including fat-specific protein 27 (FSP27) and Perilipin, which are indispensable for triacylglycerol storage in adipocytes. Accordingly, the lipolytic effect of AIM was overcome by a PPARγ-agonist or forced expression of FSP27, while it was synergized by a PPARγ-antagonist. Overall, distinct modes of lipolysis appear to take place in different physiological situations; one is a supportive response against nutritional deprivation achieved by enhancing lipase activity, and the other is a pathological consequence of obesity, causing subclinical inflammation and metabolic disorders, mediated by abolishing droplet-coating proteins.


Cell Reports | 2014

Circulating AIM Prevents Hepatocellular Carcinoma through Complement Activation

Natsumi Maehara; Satoko Arai; Mayumi Mori; Yoshihiro Iwamura; Jun Kurokawa; Toshihiro Kai; Shunsuke Kusunoki; Kaori Taniguchi; Kazutaka Ikeda; Osamu Ohara; Ken Ichi Yamamura; Toru Miyazaki

Hepatocellular carcinoma (HCC) is a widespread fatal disease and the third most common cause of cancer deaths. Here, we show the potent anti-HCC effect of the circulating protein AIM. As in adipocytes, AIM is incorporated into normal hepatocytes, where it interferes with lipid storage. In contrast, AIM accumulates on the HCC cell surface and activates the complement cascade via inactivating multiple regulators of complement activation. This response provokes necrotic cell death specifically in AIM-bound HCC cells. Accordingly, AIM(-/-) mice were highly susceptible to steatosis-associated HCC development, whereas no AIM(+/+) mouse developed the disease despite comparable liver inflammation and fibrosis in response to a long-term high-fat diet. Administration of AIM prevented tumor development in AIM(-/-) mice, and HCC induction by diethylnitrosamine was more prominent in AIM(-/-) than wild-type mice. These findings could be the basis for novel AIM-based therapeutic strategies for HCC.


Nature Communications | 2013

PAD4 regulates proliferation of multipotent haematopoietic cells by controlling c-myc expression

Katsuhiko Nakashima; Satoko Arai; Akari Suzuki; Yuko Nariai; Takeshi Urano; Manabu Nakayama; Osamu Ohara; Ken Ichi Yamamura; Kazuhiko Yamamoto; Toru Miyazaki

Peptidylarginine deiminase 4 (PAD4) functions as a transcriptional coregulator by catalyzing the conversion of histone H3 arginine residues to citrulline residues. Although the high level of PAD4 expression in bone marrow cells suggests its involvement in haematopoiesis, its precise contribution remains unclear. Here we show that PAD4, which is highly expressed in lineage− Sca-1+ c-Kit+ (LSK) cells of mouse bone marrow compared with other progenitor cells, controls c-myc expression by catalyzing the citrullination of histone H3 on its promoter. Furthermore, PAD4 is associated with lymphoid enhancer-binding factor 1 and histone deacetylase 1 at the upstream region of the c-myc gene. Supporting these findings, LSK cells, especially multipotent progenitors, in PAD4-deficient mice show increased proliferation in a cell-autonomous fashion compared with those in wild-type mice. Together, our results strongly suggest that PAD4 regulates the proliferation of multipotent progenitors in the bone marrow by controlling c-myc expression.

Collaboration


Dive into the Satoko Arai's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge