Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Satoko Aratani is active.

Publication


Featured researches published by Satoko Aratani.


The EMBO Journal | 2007

Cytoplasmic destruction of p53 by the endoplasmic reticulum-resident ubiquitin ligase ‘Synoviolin'

Satoshi Yamasaki; Naoko Yagishita; Takeshi Sasaki; Minako Nakazawa; Yukihiro Kato; Tadayuki Yamadera; Eunkyung Bae; Sayumi Toriyama; Rie Ikeda; Lei Zhang; Kazuko Fujitani; Eunkyung Yoo; Kaneyuki Tsuchimochi; Tomohiko Ohta; Natsumi Araya; Hidetoshi Fujita; Satoko Aratani; Katsumi Eguchi; Setsuro Komiya; Ikuro Maruyama; Nobuyo Higashi; Mitsuru Sato; Haruki Senoo; Takahiro Ochi; Shigeyuki Yokoyama; Tetsuya Amano; Jaeseob Kim; Akiyoshi Fukamizu; Kusuki Nishioka; Keiji Tanaka

Synoviolin, also called HRD1, is an E3 ubiquitin ligase and is implicated in endoplasmic reticulum ‐associated degradation. In mammals, Synoviolin plays crucial roles in various physiological and pathological processes, including embryogenesis and the pathogenesis of arthropathy. However, little is known about the molecular mechanisms of Synoviolin in these actions. To clarify these issues, we analyzed the profile of protein expression in synoviolin‐null cells. Here, we report that Synoviolin targets tumor suppressor gene p53 for ubiquitination. Synoviolin sequestrated and metabolized p53 in the cytoplasm and negatively regulated its cellular level and biological functions, including transcription, cell cycle regulation and apoptosis. Furthermore, these p53 regulatory functions of Synoviolin were irrelevant to other E3 ubiquitin ligases for p53, such as MDM2, Pirh2 and Cop1, which form autoregulatory feedback loops. Our results provide novel insights into p53 signaling mediated by Synoviolin.


PLOS ONE | 2009

Abnormally High Levels of Virus-Infected IFN-γ+CCR4+CD4+CD25+ T Cells in a Retrovirus-Associated Neuroinflammatory Disorder

Yoshihisa Yamano; Natsumi Araya; Tomoo Sato; Atae Utsunomiya; Kazuko Azakami; Daisuke Hasegawa; Toshihiko Izumi; Hidetoshi Fujita; Satoko Aratani; Naoko Yagishita; Ryoji Fujii; Kusuki Nishioka; Steven Jacobson; Toshihiro Nakajima

Background Human T-lymphotropic virus type 1 (HTLV-1) is a human retrovirus associated with both HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), which is a chronic neuroinflammatory disease, and adult T-cell leukemia (ATL). The pathogenesis of HAM/TSP is known to be as follows: HTLV-1-infected T cells trigger a hyperimmune response leading to neuroinflammation. However, the HTLV-1-infected T cell subset that plays a major role in the accelerated immune response has not yet been identified. Principal Findings Here, we demonstrate that CD4+CD25+CCR4+ T cells are the predominant viral reservoir, and their levels are increased in HAM/TSP patients. While CCR4 is known to be selectively expressed on T helper type 2 (Th2), Th17, and regulatory T (Treg) cells in healthy individuals, we demonstrate that IFN-γ production is extraordinarily increased and IL-4, IL-10, IL-17, and Foxp3 expression is decreased in the CD4+CD25+CCR4+ T cells of HAM/TSP patients as compared to those in healthy individuals, and the alteration in function is specific to this cell subtype. Notably, the frequency of IFN-γ-producing CD4+CD25+CCR4+Foxp3− T cells is dramatically increased in HAM/TSP patients, and this was found to be correlated with disease activity and severity. Conclusions We have defined a unique T cell subset—IFN-γ+CCR4+CD4+CD25+ T cells—that is abnormally increased and functionally altered in this retrovirus-associated inflammatory disorder of the central nervous system.


Arthritis & Rheumatism | 2001

Role of notch-1 intracellular domain in activation of rheumatoid synoviocytes

Minako Nakazawa; Hiroyasu Ishii; Hiroyuki Aono; Miwa Takai; Takahiro Honda; Satoko Aratani; Akiyoshi Fukamizu; Hiroshi Nakamura; Shinichi Yoshino; Tetsuji Kobata; Kusuki Nishioka; Toshihiro Nakajima

OBJECTIVEnNotch family proteins are transmembrane receptors that control cell fate and proliferation. Rheumatoid arthritis (RA) is characterized by activation and abnormal proliferation/differentiation of synoviocytes. We examined the expression of Notch-1 and its role in the activation of RA synoviocytes.nnnMETHODSnThe expression of Notch-1 protein was detected by a specific antibody raised against the Notch-1 intracellular domain. Notch-1 messenger RNA (mRNA) expression in synoviocytes was analyzed by Northern blotting. Notch-1 protein expression was confirmed by Western blotting with anti-Notch-1 antibody. To analyze the role of Notch-1 in synoviocyte proliferation, we examined the effects of antisense Notch-1 oligonucleotides (ODNs) and MW167, a gamma-secretase inhibitor.nnnRESULTSnNotch-1 protein and mRNA were detected in synovium from all study subjects. The nucleus of RA synoviocytes showed strong staining with anti-Notch-1 antibody, whereas there was predominantly cytoplasmic staining of normal and osteoarthritis (OA) synoviocytes. Western blotting showed a distinct approximately 63-kd protein detected by anti-Notch-1 antibody in nuclear extracts from RA synoviocytes, indicating that nuclear staining of RA synovium and synoviocytes is likely to be the result of nuclear localization of Notch-1 intracellular domain (NICD). Furthermore, tumor necrosis factor alpha (TNFalpha) increased NICD nuclear translocation in a dose-dependent manner. Antisense Notch-1 ODNs partially blocked the proliferation of RA synoviocytes and inhibited TNFalpha-induced proliferation in both OA and RA synoviocytes. In addition, gamma-secretase inhibitor, which blocks the production of NICD, also inhibited TNFalpha-induced proliferation of RA synoviocytes.nnnCONCLUSIONnOur results demonstrate the expression of Notch-1 in synoviocytes and the presence of Notch-1 fragment in the nuclei of RA synoviocytes and suggest the involvement of Notch-1 signaling in the TNFalpha-induced proliferation of RA synoviocytes.


PLOS ONE | 2010

E3 ubiquitin ligase synoviolin is involved in liver fibrogenesis.

Daisuke Hasegawa; Ryoji Fujii; Naoko Yagishita; Nobuyuki Matsumoto; Satoko Aratani; Toshihiko Izumi; Kazuko Azakami; Minako Nakazawa; Hidetoshi Fujita; Tomoo Sato; Natsumi Araya; Junki Koike; Mamoru Tadokoro; Noboru Suzuki; Kazuhiro Nagata; Haruki Senoo; Scott L. Friedman; Kusuki Nishioka; Yoshihisa Yamano; Fumio Itoh; Toshihiro Nakajima

Background and Aim Chronic hepatic damage leads to liver fibrosis, which is characterized by the accumulation of collagen-rich extracellular matrix. However, the mechanism by which E3 ubiquitin ligase is involved in collagen synthesis in liver fibrosis is incompletely understood. This study aimed to explore the involvement of the E3 ubiquitin ligase synoviolin (Syno) in liver fibrosis. Methods The expression and localization of synoviolin in the liver were analyzed in CCl4-induced hepatic injury models and human cirrhosis tissues. The degree of liver fibrosis and the number of activated hepatic stellate cells (HSCs) was compared between wild type (wt) and Syno+/− mice in the chronic hepatic injury model. We compared the ratio of apoptosis in activated HSCs between wt and Syno+/− mice. We also analyzed the effect of synoviolin on collagen synthesis in the cell line from HSCs (LX-2) using siRNA-synoviolin and a mutant synoviolin in which E3 ligase activity was abolished. Furthermore, we compared collagen synthesis between wt and Syno−/− mice embryonic fibroblasts (MEF) using quantitative RT-PCR, western blotting, and collagen assay; then, we immunohistochemically analyzed the localization of collagen in Syno−/− MEF cells. Results In the hepatic injury model as well as in cirrhosis, synoviolin was upregulated in the activated HSCs, while Syno+/− mice developed significantly less liver fibrosis than in wt mice. The number of activated HSCs was decreased in Syno+/− mice, and some of these cells showed apoptosis. Furthermore, collagen expression in LX-2 cells was upregulated by synoviolin overexpression, while synoviolin knockdown led to reduced collagen expression. Moreover, in Syno−/− MEF cells, the amounts of intracellular and secreted mature collagen were significantly decreased, and procollagen was abnormally accumulated in the endoplasmic reticulum. Conclusion Our findings demonstrate the importance of the E3 ubiquitin ligase synoviolin in liver fibrosis.


Arthritis & Rheumatism | 2009

Activation of synoviolin promoter in rheumatoid synovial cells by a novel transcription complex of interleukin enhancer binding factor 3 and GA binding protein α

Toshihiko Izumi; Ryoji Fujii; Tomonori Izumi; Minako Nakazawa; Naoko Yagishita; Kaneyuki Tsuchimochi; Yoshihisa Yamano; Tomoo Sato; Hidetoshi Fujita; Satoko Aratani; Natsumi Araya; Kazuko Azakami; Daisuke Hasegawa; Shunji Kasaoka; Ryosuke Tsuruta; Masahiro Yokouti; Kosei Ijiri; Moroe Beppu; Ikuro Maruyama; Kusuki Nishioka; Tsuyoshi Maekawa; Setsuro Komiya; Toshihiro Nakajima

OBJECTIVEnSynoviolin is an E3 ubiquitin ligase, and its overexpression is implicated in the pathogenesis of rheumatoid arthritis (RA). We reported previously that Ets binding site 1 (EBS-1) within the synoviolin promoter is crucial for the expression of synoviolin, and GA binding protein (GABP) binds to this site. This study was undertaken to elucidate the precise mechanisms of transcriptional regulation via EBS-1.nnnMETHODSnWe performed purification and identification of complex components that bind to EBS-1 and inspected their contributions to the transcriptional regulation of synoviolin in rheumatoid synovial cells. We biochemically purified proteins that had EBS-1 binding activity and identified the proteins using liquid chromatography tandem mass spectrometry analysis. The identified proteins were verified to recruit and form the complex on EBS-1 using electrophoretic mobility shift assay and coimmunoprecipitation assay. Furthermore, their transcription activities were tested by reporter assays and RNA interference experiments.nnnRESULTSnWe identified interleukin enhancer binding factor 3 (ILF-3) as a novel factor in the complex. ILF-3 was demonstrated to activate the synoviolin promoter via association with GABPalpha in rheumatoid synovial cells. In addition, further activation was observed with ILF-2 and GABPbeta, previously reported interactants of ILF-3 and GABPalpha, respectively. Moreover, ILF-3-knockdown experiments showed reduced expression of the synoviolin gene.nnnCONCLUSIONnOur findings indicate that ILF-3, which has been known to regulate IL-2 expression in T cells, up-regulates synoviolin expression with GABPalpha in rheumatoid synovial cells. ILF-3 might be a target for RA treatment through its effect on IL-2 in T cells and synoviolin in rheumatoid synovial cells.


Arthritis & Rheumatism | 2011

Overexpression of SPACIA1/SAAL1, a newly identified gene that is involved in synoviocyte proliferation, accelerates the progression of synovitis in mice and humans

Tomoo Sato; Ryoji Fujii; Koji Konomi; Naoko Yagishita; Satoko Aratani; Natsumi Araya; Hiroyuki Aono; Kazuo Yudoh; Noboru Suzuki; Moroe Beppu; Yoshihisa Yamano; Kusuki Nishioka; Toshihiro Nakajima

OBJECTIVEnTo identify novel genes associated with dysregulated proliferation of activated synovial fibroblasts, which are involved in arthritic joint destruction.nnnMETHODSnWe performed transcriptome analysis to identify genes that were up-regulated in the foot joints of mice with collagen-induced arthritis (CIA). The effect of candidate genes on proliferation of synovial fibroblasts was screened using antisense oligodeoxynucleotides and small interfering RNAs (siRNAs). We characterized the expression and function of a novel gene, synoviocyte proliferation-associated in collagen-induced arthritis 1 (SPACIA1)/serum amyloid A-like 1 (SAAL1) using antibodies and siRNA and established transgenic mice to examine the effect of SPACIA1/SAAL1 overexpression in CIA.nnnRESULTSnHuman and mouse SPACIA1/SAAL1 encoded 474 amino acid proteins that shared 80% homology. SPACIA1/SAAL1 was primarily expressed in the nucleus of rheumatoid arthritis (RA) synovial fibroblasts and was highly expressed in the hyperplastic lining of inflamed synovium. In addition, its expression level in RA- or osteoarthritis (OA)-affected synovial tissue was positively correlated with the thickness of the synovial lining. Furthermore, SPACIA1/SAAL1 siRNA inhibited the proliferation of synovial fibroblasts, especially tumor necrosis factor α-induced synovial fibroblasts, by blocking entry into the S phase without inducing apoptosis. Finally, transgenic mice overexpressing SPACIA1/SAAL1 exhibited early onset and rapid progression of CIA.nnnCONCLUSIONnThese results suggest that SPACIA1/SAAL1 is necessary for abnormal proliferation of synovial fibroblasts and its overexpression is associated with the progression of synovitis in mice and humans. Thus, therapy targeting SPACIA1/SAAL1 might have potential as an inhibitor of synovial proliferation in RA and/or OA.


Journal of Biological Chemistry | 2000

The Autoimmune Regulator Protein Has Transcriptional Transactivating Properties and Interacts with the Common Coactivator CREB-binding Protein

Jukka Pitkänen; Vassilis Doucas; Thomas Sternsdorf; Toshihiro Nakajima; Satoko Aratani; Kirsten Jensen; Hans Will; Perttu Vähämurto; Juha Ollila; Mauno Vihinen; Hamish S. Scott; Jun Kudoh; Nobuyoshi Shimizu; Kai Krohn; Pärt Peterson


Arthritis & Rheumatism | 2006

Comparative analysis of gene expression profiles in intact and damaged regions of human osteoarthritic cartilage

Tomoo Sato; Koji Konomi; Satoshi Yamasaki; Satoko Aratani; Kaneyuki Tsuchimochi; Masahiro Yokouchi; Kayo Masuko-Hongo; Naoko Yagishita; Hiroshi Nakamura; Setsuro Komiya; Moroe Beppu; Haruhito Aoki; Kusuki Nishioka; Toshihiro Nakajima


Biochemical and Biophysical Research Communications | 1997

Functional Association between CBP and HNF4 inTrans-activation

Eisaku Yoshida; Satoko Aratani; Hiroshi Itou; Makoto Miyagishi; Masaki Takiguchi; Takashi Osumu; Kazuo Murakami; Akiyoshi Fukamizu


Journal of Biological Chemistry | 2001

A Role of RNA Helicase A in cis-Acting Transactivation Response Element-mediated Transcriptional Regulation of Human Immunodeficiency Virus Type 1

Ryouji Fujii; Mika Okamoto; Satoko Aratani; Takayuki Oishi; Takayuki Ohshima; Kazunari Taira; Masanori Baba; Akiyoshi Fukamizu; Toshihiro Nakajima

Collaboration


Dive into the Satoko Aratani's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hidetoshi Fujita

St. Marianna University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Minako Nakazawa

St. Marianna University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Natsumi Araya

St. Marianna University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Ryoji Fujii

St. Marianna University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Tomoo Sato

St. Marianna University School of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge