Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Satoko Iwahori is active.

Publication


Featured researches published by Satoko Iwahori.


PLOS Pathogens | 2009

Degradation of Phosphorylated p53 by Viral Protein-ECS E3 Ligase Complex

Yoshitaka Sato; Takumi Kamura; Noriko Shirata; Takayuki Murata; Ayumi Kudoh; Satoko Iwahori; Sanae Nakayama; Hiroki Isomura; Yukihiro Nishiyama; Tatsuya Tsurumi

p53-signaling is modulated by viruses to establish a host cellular environment advantageous for their propagation. The Epstein-Barr virus (EBV) lytic program induces phosphorylation of p53, which prevents interaction with MDM2. Here, we show that induction of EBV lytic program leads to degradation of p53 via an ubiquitin-proteasome pathway independent of MDM2. The BZLF1 protein directly functions as an adaptor component of the ECS (Elongin B/C-Cul2/5-SOCS-box protein) ubiquitin ligase complex targeting p53 for degradation. Intringuingly, C-terminal phosphorylation of p53 resulting from activated DNA damage response by viral lytic replication enhances its binding to BZLF1 protein. Purified BZLF1 protein-associated ECS could be shown to catalyze ubiquitination of phospho-mimetic p53 more efficiently than the wild-type in vitro. The compensation of p53 at middle and late stages of the lytic infection inhibits viral DNA replication and production during lytic infection, suggesting that the degradation of p53 is required for efficient viral propagation. Taken together, these findings demonstrate a role for the BZLF1 protein-associated ECS ligase complex in regulation of p53 phosphorylated by activated DNA damage signaling during viral lytic infection.


Journal of Virology | 2009

Homologous Recombinational Repair Factors Are Recruited and Loaded onto the Viral DNA Genome in Epstein-Barr Virus Replication Compartments

Ayumi Kudoh; Satoko Iwahori; Yoshitaka Sato; Sanae Nakayama; Hiroki Isomura; Takayuki Murata; Tatsuya Tsurumi

ABSTRACT Homologous recombination is an important biological process that facilitates genome rearrangement and repair of DNA double-strand breaks (DSBs). The induction of Epstein-Barr virus (EBV) lytic replication induces ataxia telangiectasia-mutated (ATM)-dependent DNA damage checkpoint signaling, leading to the clustering of phosphorylated ATM and Mre11/Rad50/Nbs1 (MRN) complexes to sites of viral genome synthesis in nuclei. Here we report that homologous recombinational repair (HRR) factors such as replication protein A (RPA), Rad51, and Rad52 as well as MRN complexes are recruited and loaded onto the newly synthesized viral genome in replication compartments. The 32-kDa subunit of RPA is extensively phosphorylated at sites in accordance with those with ATM. The hyperphosphorylation of RPA32 causes a change in RPA conformation, resulting in a switch from the catalysis of DNA replication to the participation in DNA repair. The levels of Rad51 and phosphorylated RPA were found to increase with the progression of viral productive replication, while that of Rad52 proved constant. Furthermore, biochemical fractionation revealed increases in levels of DNA-bound forms of these HRRs. Bromodeoxyuridine-labeled chromatin immunoprecipitation and PCR analyses confirmed the loading of RPA, Rad 51, Rad52, and Mre11 onto newly synthesized viral DNA, and terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling analysis demonstrated DSBs in the EBV replication compartments. HRR factors might be recruited to repair DSBs on the viral genome in viral replication compartments. RNA interference knockdown of RPA32 and Rad51 prevented viral DNA synthesis remarkably, suggesting that homologous recombination and/or repair of viral DNA genome might occur, coupled with DNA replication to facilitate viral genome synthesis.


Journal of Virology | 2006

Phosphorylation of MCM4 at Sites Inactivating DNA Helicase Activity of the MCM4-MCM6-MCM7 Complex during Epstein-Barr Virus Productive Replication

Ayumi Kudoh; Tohru Daikoku; Yukio Ishimi; Yasushi Kawaguchi; Noriko Shirata; Satoko Iwahori; Hiroki Isomura; Tatsuya Tsurumi

ABSTRACT Induction of Epstein-Barr virus (EBV) lytic replication blocks chromosomal DNA replication notwithstanding an S-phase-like cellular environment with high cyclin-dependent kinase (CDK) activity. We report here that the phosphorylated form of MCM4, a subunit of the MCM complex essential for chromosomal DNA replication, increases with progression of lytic replication, Thr-19 and Thr-110 being CDK2/CDK1 targets whose phosphorylation inactivates MCM4-MCM6-MCM7 (MCM4-6-7) complex-associated DNA helicase. Expression of EBV-encoded protein kinase (EBV-PK) in HeLa cells caused phosphorylation of these sites on MCM4, leading to cell growth arrest. In vitro, the sites of MCM4 of the MCM4-6-7 hexamer were confirmed to be phosphorylated with EBV-PK, with the same loss of helicase activity as with CDK2/cyclin A. Introducing mutations in the N-terminal six Ser and Thr residues of MCM4 reduced the inhibition by CDK2/cyclin A, while EBV-PK inhibited the helicase activities of both wild-type and mutant MCM4-6-7 hexamers, probably since EBV-PK can phosphorylate MCM6 and another site(s) of MCM4 in addition to the N-terminal residues. Therefore, phosphorylation of the MCM complex by redundant actions of CDK and EBV-PK during lytic replication might provide one mechanism to block chromosomal DNA replication in the infected cells through inactivation of DNA unwinding by the MCM4-6-7 complex.


Journal of Biological Chemistry | 2006

Postreplicative mismatch repair factors are recruited to epstein-barr virus replication compartments

Tohru Daikoku; Ayumi Kudoh; Yutaka Sugaya; Satoko Iwahori; Noriko Shirata; Hiroki Isomura; Tatsuya Tsurumi

The mismatch repair (MMR) system, highly conserved throughout evolution, corrects nucleotide mispairing that arise during cellular DNA replication. We report here that proliferating cell nuclear antigen (PCNA), the clamp loader complex (RF-C), and a series of MMR proteins like MSH-2, MSH-6, MLH1, and hPSM2 can be assembled to Epstein-Barr virus replication compartments, the sites of viral DNA synthesis. Levels of the DNA-bound form of PCNA increased with progression of viral productive replication. Bromodeoxyuridine-labeled chromatin immunodepletion analyses confirmed that PCNA is loaded onto newly synthesized viral DNA as well as BALF2 and BMRF1 viral proteins during lytic replication. Furthermore, the anti-PCNA, -MSH2, -MSH3, or -MSH6 antibodies could immunoprecipitate BMRF1 replication protein probably via the viral DNA genome. PCNA loading might trigger transfer of a series of host MMR proteins to the sites of viral DNA synthesis. The MMR factors might function for the repair of mismatches that arise during viral replication or act to inhibit recombination between moderately divergent (homologous) sequences.


Cellular Signalling | 2008

Identification of phosphorylation sites on transcription factor Sp1 in response to DNA damage and its accumulation at damaged sites

Satoko Iwahori; Yoshihiro Yasui; Ayumi Kudoh; Yoshitaka Sato; Sanae Nakayama; Takayuki Murata; Hiroki Isomura; Tatsuya Tsurumi

DNA damage induces hyper-phosphorylation of the Sp1 transcriptional factor. We have demonstrated that ionizing radiation-associated DNA double-strand breaks (DSBs) induce phosphorylation of at least Ser-56 and Ser-101 residues on Sp1 in an ATM-dependent manner. UV irradiation- or hydroxyurea (HU)-induced replicative stress results in phosphorylation of only the Ser-101 residue. Furthermore, silencing of the ATM- and Rad3-related protein (ATR) in ATM-deficient cells treated with HU abrogated the Ser-101 phosphorylation. Thus, phosphorylation of Ser-101 on Sp1 appears to be a general response to DNA damage dependent on both ATM and ATR. Although silencing of Sp1 expression by siRNA targeting resulted in an increase in sensitivity to ionizing radiation (IR), the Ser-101 phosphorylation did not affect transcriptional activity from the Sp1 responsive promoter. Confocal laser microscopy analysis revealed co-localization of phosphorylated Sp1 at Ser-101 with phosphorylated ATM at Ser-1981, the affected sites representing DSBs. These observations suggest that phosphorylated Sp1 might play a role in DNA repair at damage sites rather than functioning in transcriptional regulation.


Virology | 2009

Efficient production of infectious viruses requires enzymatic activity of Epstein-Barr virus protein kinase

Takayuki Murata; Hiroki Isomura; Yoriko Yamashita; Shigenori Toyama; Yoshitaka Sato; Sanae Nakayama; Ayumi Kudoh; Satoko Iwahori; Teru Kanda; Tatsuya Tsurumi

The Epstein-Barr virus (EBV) BGLF4 gene product is the only protein kinase encoded by the virus genome. In order to elucidate its physiological roles in viral productive replication, we here established a BGLF4-knockout mutant and a revertant virus. While the levels of viral DNA replication of the deficient mutant were equivalent to those of the wild-type and the revertant, virus production was significantly impaired. Expression of the BGLF4 protein in trans fully complemented the low yield of the mutant virus, while expression of a kinase-dead (K102I) form of the protein failed to restore the virus titer. These results demonstrate that BGLF4 plays a significant role in production of infectious viruses and that the kinase activity is crucial.


Virology | 2009

Expression of Epstein–Barr virus BZLF1 immediate-early protein induces p53 degradation independent of MDM2, leading to repression of p53-mediated transcription

Yoshitaka Sato; Noriko Shirata; Ayumi Kudoh; Satoko Iwahori; Sanae Nakayama; Takayuki Murata; Hiroki Isomura; Yukihiro Nishiyama; Tatsuya Tsurumi

The Epstein-Barr virus (EBV) lytic program elicits ATM-dependent DNA damage response, resulting in phosphorylation of p53 at N-terminus, which prevents interaction with MDM2. Nevertheless, p53-downstream signaling is blocked. We found here that during the lytic infection p53 was actively degraded in a proteasome-dependent manner even with a reduced level of MDM2. BZLF1 protein enhanced the ubiquitination of p53 in SaOS-2 cells. The degradation of p53 was observed even in the presence of Nutlin-3, an inhibitor of p53-MDM2 interaction, and also in mouse embryo fibroblasts lacking mdm2 gene, indicating that the BZLF1 protein-induced degradation of p53 was independent of MDM2. Furthermore, Nutlin-3 increased the level of p53 in the latent phase of EBV infection but not in the lytic phase. Although p53 level is regulated by MDM2 in the latent phase, it might be mediated by the BZLF1 protein-associated E3 ubiquitin ligase in the lytic phase for efficient viral propagation.


Journal of Virology | 2008

Noncanonical TATA Sequence in the UL44 Late Promoter of Human Cytomegalovirus Is Required for the Accumulation of Late Viral Transcripts

Hiroki Isomura; Mark F. Stinski; Ayumi Kudoh; Takayuki Murata; Sanae Nakayama; Yoshitaka Sato; Satoko Iwahori; Tatsuya Tsurumi

ABSTRACT During productive infection, human cytomegalovirus (HCMV) UL44 transcription initiates at three distinct start sites that are differentially regulated. Two of the start sites, the distal and the proximal, are active at early times, whereas the middle start site is active only at late times after infection. The UL44 early viral gene product is essential for viral DNA synthesis. The UL44 gene product from the late viral promoter affects primarily viral gene expression at late times after infection rather than viral DNA synthesis (H. Isomura, M. F. Stinski, A. Kudoh, S. Nakayama, S. Iwahori, Y. Sato, and T. Tsurumi, J. Virol. 81:6197, 2007). The UL44 early viral promoters have a canonical TATA sequence, “TATAA.” In contrast, the UL44 late viral promoter has a noncanonical TATA sequence. Using recombinant viruses, we found that the noncanonical TATA sequence is required for the accumulation of late viral transcripts. The GC boxes that surround the middle TATA element did not affect the kinetics or the start site of UL44 late transcription. Replacement of the distal TATA element with a noncanonical TATA sequence did not affect the kinetics of transcription or the transcription start site, but it did induce an alternative transcript at late times after infection. The data indicate that a noncanonical TATA box is used at late times after HCMV infection.


Journal of Virology | 2007

Enhanced Phosphorylation of Transcription Factor Sp1 in Response to Herpes Simplex Virus Type 1 Infection Is Dependent on the Ataxia Telangiectasia-Mutated Protein

Satoko Iwahori; Noriko Shirata; Yasushi Kawaguchi; Sandra K. Weller; Yoshitaka Sato; Ayumi Kudoh; Sanae Nakayama; Hiroki Isomura; Tatsuya Tsurumi

ABSTRACT The ataxia telangiectasia-mutated (ATM) protein, a member of the related phosphatidylinositol 3-like kinase family encoded by a gene responsible for the human genetic disorder ataxia telangiectasia, regulates cellular responses to DNA damage and viral infection. It has been previously reported that herpes simplex virus type 1 (HSV-1) infection induces activation of protein kinase activity of ATM and hyperphosphorylation of transcription factor, Sp1. We show that ATM is intimately involved in Sp1 hyperphosphorylation during HSV-1 infection rather than individual HSV-1-encoded protein kinases. In ATM-deficient cells or cells silenced for ATM expression by short hairpin RNA targeting, hyperphosphorylation of Sp1 was prevented even as HSV-1 infection progressed. Mutational analysis of putative ATM phosphorylation sites on Sp1 and immunoblot analysis with phosphopeptide-specific Sp1 antibodies clarified that at least Ser-56 and Ser-101 residues on Sp1 became phosphorylated upon HSV-1 infection. Serine-to-alanine mutations at both sites on Sp1 considerably abolished hyperphosphorylation of Sp1 upon infection. Although ATM phosphorylated Ser-101 but not Ser-56 on Sp1 in vitro, phosphorylation of Sp1 at both sites was not detected at all upon infection in ATM-deficient cells, suggesting that cellular kinase(s) activated by ATM could be involved in phosphorylation at Ser-56. Upon viral infection, Sp1-dependent transcription in ATM expression-silenced cells was almost the same as that in ATM-intact cells, suggesting that ATM-dependent phosphorylation of Sp1 might hardly affect its transcriptional activity during the HSV-1 infection. ATM-dependent Sp1 phosphorylation appears to be a global response to various DNA damage stress including viral DNA replication.


Journal of Virology | 2007

The Late Promoter of the Human Cytomegalovirus Viral DNA Polymerase Processivity Factor Has an Impact on Delayed Early and Late Viral Gene Products but Not on Viral DNA Synthesis

Hiroki Isomura; Mark F. Stinski; Ayumi Kudoh; Sanae Nakayama; Satoko Iwahori; Yoshitaka Sato; Tatsuya Tsurumi

ABSTRACT Transcription of the DNA polymerase processivity factor gene (UL44) of human cytomegalovirus initiates at three distinct start sites, which are differentially regulated during productive infection. Two of these start sites, the distal and proximal sites, are active at early times, and the middle start site is active at only late times after infection (F. Leach and E. S. Mocarski, J. Virol. 63:1783-1791, 1989). Compared to the wild type, UL44 gene expression was lower for recombinant viruses with the distal or the middle TATA element mutated. The transcripts initiating from the distal or middle start site facilitated late viral gene expression. The level of viral DNA synthesis was affected by mutation of the distal TATA element. In contrast, mutation of the middle TATA element did not affect the level of viral DNA synthesis, but it did affect significantly the level of late viral gene expression. Recombinant viruses with the distal or middle TATA element mutated grew more slowly than the wild type at both low and high multiplicities of infection. Reduced expression of the UL44 gene from the late middle viral promoter correlated with decreased late viral protein expression and decreased viral growth.

Collaboration


Dive into the Satoko Iwahori's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert F. Kalejta

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark F. Stinski

Roy J. and Lucille A. Carver College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge