Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Satoko Kakiuchi-Kiyota is active.

Publication


Featured researches published by Satoko Kakiuchi-Kiyota.


Toxicological Sciences | 2010

Effects of Pioglitazone, a Peroxisome Proliferator-Activated Receptor Gamma Agonist, on the Urine and Urothelium of the Rat

Shugo Suzuki; Lora L. Arnold; Karen L. Pennington; Satoko Kakiuchi-Kiyota; Min Wei; Hideki Wanibuchi; Samuel M. Cohen

Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors, which belong to the nuclear receptor superfamily. Some PPARgamma agonists, such as pioglitazone, and dual PPARgamma/PPARalpha agonists, such as muraglitazar, induced urothelial bladder tumors in rats but not in mice. In this study, we investigated the early effects in the urine and bladder of rats treated with pioglitazone to evaluate the possible relation between urinary solids formation and urothelial cytotoxicity and regenerative proliferation. In a 4-week experiment, treatment of rats with 16 mg/kg pioglitazone induced cytotoxicity and necrosis of the urothelial superficial layer, with increased cell proliferation measured by bromodeoxyuridine labeling index and hyperplasia by histology. It also produced alterations in urinary solid formation, especially calcium-containing crystals and calculi. PPARgamma agonists (pioglitazone and troglitazone) in vitro reduced rat urothelial cell proliferation and induced uroplakin synthesis, a specific differentiation marker in urothelial cells. Our data support the hypothesis that the bladder tumors produced in rats by pioglitazone are related to the formation of urinary solids. This strongly supports the previous conclusion in studies with muraglitazar that this is a rat-specific phenomenon and does not pose a urinary bladder cancer risk to humans treated with these agents.


Toxicology and Applied Pharmacology | 2010

Severe systemic toxicity and urinary bladder cytotoxicity and regenerative hyperplasia induced by arsenite in arsenic (+3 oxidation state) methyltransferase knockout mice. A preliminary report.

Masanao Yokohira; Lora L. Arnold; Karen L. Pennington; Shugo Suzuki; Satoko Kakiuchi-Kiyota; Karen Herbin-Davis; David J. Thomas; Samuel M. Cohen

Arsenic (+3 oxidation state) methyltransferase (As3mt) catalyzes reactions which convert inorganic arsenic to methylated metabolites. This study determined whether the As3mt null genotype in the mouse modifies cytotoxic and proliferative effects seen in urinary bladders of wild type mice after exposure to inorganic arsenic. Female wild type C57BL/6 mice and As3mt KO mice were divided into 3 groups each (n=8) with free access to a diet containing 0, 100 or 150 ppm of arsenic as arsenite (As(III)). During the first week of As(III) exposure, As3mt KO mice exhibited severe and lethal systemic toxicity. At termination, urinary bladders of both As3mt KO and wild type mice showed hyperplasia by light microscopy. As expected, arsenic-containing granules were found in the superficial urothelial layer of wild type mice. In As3mt KO mice these granules were present in all layers of the bladder epithelium and were more abundant and larger than in wild type mice. Scanning electron microscopy of the bladder urothelium of As3mt KO mice treated with 100 ppm As(III) showed extensive superficial necrosis and hyperplastic changes. In As3mt KO mice, livers showed severe acute inflammatory changes and spleen size and lymphoid areas were decreased compared with wild type mice. Thus, diminished arsenic methylation in As3mt KO mice exacerbates systemic toxicity and the effects of As(III) on the bladder epithelium, showing that altered kinetic and dynamic behavior of arsenic can affect its toxicity.


Toxicological Sciences | 2011

Effect of Sodium Arsenite Dose Administered in the Drinking Water on the Urinary Bladder Epithelium of Female Arsenic (+3 Oxidation State) Methyltransferase Knockout Mice

Masanao Yokohira; Lora L. Arnold; Karen L. Pennington; Shugo Suzuki; Satoko Kakiuchi-Kiyota; Karen Herbin-Davis; David J. Thomas; Samuel M. Cohen

The enzyme arsenic (+3 oxidation state) methyltransferase (As3mt) catalyzes reactions converting inorganic arsenic to methylated metabolites, some of which are highly cytotoxic. In a previous study, female As3mt knockout (KO) mice treated with diet containing 100 or 150 ppm arsenic as arsenite showed systemic toxicity and significant effects on the urothelium. In the present study, we showed that the cytotoxic and proliferative effects of arsenite administration on the urothelium are dose dependent. Female wild-type C57BL/6 mice and As3mt KO mice were divided into five groups (n = 7) with free access to drinking water containing 0, 1, 10, 25, or 50 ppm arsenic as arsenite for 4 weeks. At sacrifice, urinary bladders of both As3mt KO and wild-type mice showed hyperplasia by light microscopy; however, the hyperplasia was more severe in the As3mt KO mice. Intracytoplasmic granules were detected in the urothelium of As3mt KO and wild-type mice at arsenic doses ≥ 10 ppm but were more numerous, more extensive, and larger in the KO mice. A no effect level for urothelial effects was identified at 1 ppm arsenic in the wild-type and As3mt KO mice. In As3mt KO mice, livers showed mild acute inflammation and kidneys showed hydronephrosis. The present study shows a dose-response for the effects of orally administered arsenite on the bladder urothelium of wild-type and As3mt KO mice, with greater effects in the KO strain but with a no effect level of 1 ppm for both.


Toxicology and Applied Pharmacology | 2009

Effects of the PPARγ agonist troglitazone on endothelial cells in vivo and in vitro: Differences between human and mouse☆

Satoko Kakiuchi-Kiyota; Joseph A. Vetro; Shugo Suzuki; Michelle L. Varney; Huai Yun Han; Merielen Nascimento; Karen L. Pennington; Lora L. Arnold; Rakesh K. Singh; Samuel M. Cohen

Peroxisome proliferator-activated receptor gamma (PPARgamma) agonists and PPARgamma/alpha dual agonists have been or are being developed for clinical use in the treatment of type 2 diabetes mellitus and hyperlipidemias. A common tumor finding in rodent carcinogenicity studies for these agonists is hemangioma/hemangiosarcoma in mice but not in rats. We hypothesized that increased endothelial cell proliferation may be involved in the mechanism of PPAR agonist-induced vascular tumors in mice, and we investigated the effects on endothelial cells utilizing troglitazone, the first clinically used PPARgamma agonist, in vivo and in vitro. Troglitazone (400 and 800 mg/kg/day) induced hemangiosarcomas in mice in a 2-year bioassay. We showed that troglitazone increased endothelial cell proliferation in brown and white adipose tissue and liver in mice at sarcomagenic doses after 4 weeks of treatment. Troglitazone was cytotoxic both to human dermal microvascular endothelial cells (HMEC1) and mouse mammary fat pad microvascular endothelial cells (MFP MVEC) at high concentrations. However, MFP MVEC were more resistant to the cytotoxic effects of troglitazone based on the much lower LC(50) in HMEC1 (17.4 muM) compared to MFP MVEC (92.2 muM). Troglitazone increased the proliferation and survival of MFP MVEC but not HMEC1 in growth factor reduced conditions. Our data demonstrate that troglitazone may induce hemangiosarcomas in mice, at least in part, through enhancement of survival and proliferation of microvascular endothelial cells. Such an effect does not occur with human cells, suggesting that human may react differently to exposure to PPAR agonists compared with mice.


Toxicologic Pathology | 2008

Inorganic Arsenic–Induced Intramitochondrial Granules in Mouse Urothelium

Shugo Suzuki; Lora L. Arnold; David Muirhead; Xiufen Lu; X. Chris Le; James A. Bjork; Kendall B. Wallace; Takamasa Ohnishi; Satoko Kakiuchi-Kiyota; Karen L. Pennington; Samuel M. Cohen

Based on epidemiological data, chronic exposure to high levels of inorganic arsenic in the drinking water is carcinogenic to the urinary bladder of humans. Recently, models have been developed involving transplacental administration of inorganic arsenic and subsequent administration of another substance that produces a low incidence of urogenital neoplasms. Administration of arsenite or arsenate in the diet or drinking water to five-to eight-week-old mice or rats rapidly induces urothelial cytotoxicity and regenerative hyperplasia. In mice administered arsenite, we observed eosinophilic intracytoplasmic granules present in the urothelial cells. These granules were not present in urothelial cells of untreated mice or in treated or untreated rats. By transmission electron microscopy, the granules were located within the mitochondrial matrix, that is, mitochondrial inclusions. Arsenic, primarily as arsenite, was present in partially purified mitochondria containing these granules. Cells containing the granules were not usually associated with degenerative changes. Lack of these granules in rats suggests that they are not necessary for inorganic arsenic–induced urothelial cytotoxicity or hyperplasia. These granules have also been observed with exposures to other metals in other tissues and other species, suggesting that they represent a protective mechanism against metal-induced toxicity.


Food and Chemical Toxicology | 2011

The effects of oral treatment with transfluthrin on the urothelium of rats and its metabolite, tetrafluorobenzoic acid on urothelial cells in vitro

Masanao Yokohira; Lora L. Arnold; Sophie Lautraite; Larry P. Sheets; Sheila Wason; Bernhard Stahl; David Eigenberg; Karen L. Pennington; Satoko Kakiuchi-Kiyota; Samuel M. Cohen

Transfluthrin, a pyrethroid insecticide, induced urinary bladder tumors in rats but not in mice in 2-year bioassays. We investigated the urothelial effects of transfluthrin in vivo in rats and the effects of its major metabolite tetrafluorobenzoic acid (TFBA) in vitro on rat (MYP3) and human (1T1) urothelial cell lines. Rats were fed diet containing 0, 2000 or 5000 (with and without 1.25% NH(4)Cl) ppm transfluthrin for 4 weeks or 0 or 2000 ppm transfluthrin for 13 weeks. After 4 weeks, there was no evidence of hyperplasia or increased proliferation in any treatment group. After 13 weeks treatment with 2000 ppm, cytotoxicity and necrosis of the rat urothelial superficial layer were detected by scanning electron microscopy. The urinary concentration of TFBA in rats fed 2000 ppm transfluthrin was 2.94±0.67 mM. The LC(50) of TFBA was 2.25 mM for MYP3 cells and 2.43 mM for 1T1 cells. These studies support cytotoxicity and regenerative proliferation as the mechanism for induction of bladder tumors with high oral doses of transfluthrin due to metabolism of transfluthrin to the weakly cytotoxic TFBA which is excreted at high concentrations in the urine of rats administered high doses of transfluthrin (≥2000 ppm) for an extended period.


Toxicologic Pathology | 2011

Evaluation of Direct and Indirect Effects of the PPARγ Agonist Troglitazone on Mouse Endothelial Cell Proliferation

Satoko Kakiuchi-Kiyota; Lora L. Arnold; Masanao Yokohira; Petra Koza-Taylor; Shugo Suzuki; Michelle L. Varney; Karen L. Pennington; Samuel M. Cohen

Peroxisome proliferator-activated receptor gamma (PPARγ) agonists and PPARγ/α dual agonists are used in the treatment of type 2 diabetes mellitus and hyperlipidemias. In carcinogenicity studies, some of these agonists induced hemangiomas/hemangiosarcomas in mice, but not in rats. We hypothesized that increased endothelial cell (EC) proliferation may be involved in the mechanism of PPAR agonist–induced vascular tumors in mice. We previously showed that the sarcomagenic PPARγ agonist troglitazone (TG) increased EC proliferation in brown and white adipose tissue and liver in mice at sarcomagenic doses (400 and 800 mg/kg) after four weeks of treatment. In vitro, TG had a mitogenic effect on mouse microvascular mouse ECs by increasing cell proliferation and survival. The current studies showed that treatment of mouse ECs in vitro induced alterations in proliferation pathway gene expression, especially the expression of insulin-like growth factor-1, but had no effect on mouse oxidative stress pathways. In vivo, treatment with vitamin E did not inhibit TG-induced EC proliferation in liver and adipose tissue. In addition, no hypoxic effect was detected in adipose tissue of TG-treated mice; however, TG had a minor effect on hepatocellular hypoxia. These results provide additional evidence supporting a direct mitogenic effect in the mode of action of TG-induced hemangiosarcomas in mice.


Toxicology | 2011

Evaluation of PPARγ agonists on rodent endothelial cell proliferation.

Satoko Kakiuchi-Kiyota; Lora L. Arnold; Masanao Yokohira; Shugo Suzuki; Karen L. Pennington; Samuel M. Cohen

The PPARγ agonist troglitazone (TG) induced an increased incidence of hemangiosarcomas in mice but was not carcinogenic in rats. In contrast, pioglitazone (PIO) did not induce hemangiosarcomas or any other tumors in mice. We previously demonstrated that TG increased the proliferation of endothelial cells (ECs) in liver and adipose tissue in mice, and acted as a mitogenic stimulant and an inhibitor of apoptosis in vitro in mouse, but not human, ECs. In the present study, we investigated whether TG had any effect on the proliferation of ECs in rats. We also evaluated the in vivo and in vitro effects of PIO on ECs in mice. In rats, TG did not increase the Ki-67 labeling index (LI) of ECs in liver or adipose tissue at doses used in the two-year bioassay, and did not increase hepatocyte proliferation. PIO administered to mice did not increase the Ki-67 LI of hepatocytes or ECs in liver or white adipose tissue, but slightly increased the EC proliferation in brown adipose tissue. PIO was slightly mitogenic on cultured mouse ECs after 3 days of treatment but not after 6 days, and there was no inhibition of apoptosis, in contrast to what was seen with TG. The data support the conclusion that sustained EC proliferation in mice is necessary, for the induction of hemangiosarcomas by TG, and these short-term and long-term effects are not seen with TG in the rat or with PIO in mice, treatments that also are not related to the induction of hemangiosarcomas in two-year bioassays.


Toxicology | 2009

Effects of co-administration of dietary sodium arsenite and an NADPH oxidase inhibitor on the rat bladder epithelium

Shugo Suzuki; Lora L. Arnold; Karen L. Pennington; Satoko Kakiuchi-Kiyota; Samuel M. Cohen


Toxicology | 2012

Effects of co-administration of dietary sodium arsenate and 2,3-dimercaptopropane-1-sulfonic acid (DMPS) on the rat bladder epithelium

Shugo Suzuki; Lora L. Arnold; Karen L. Pennington; Satoko Kakiuchi-Kiyota; Baowei Chen; Xiufen Lu; X. Chris Le; Samuel M. Cohen

Collaboration


Dive into the Satoko Kakiuchi-Kiyota's collaboration.

Top Co-Authors

Avatar

Karen L. Pennington

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Lora L. Arnold

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Samuel M. Cohen

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Masanao Yokohira

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Michelle L. Varney

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Joseph A. Vetro

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Merielen Nascimento

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David J. Thomas

United States Environmental Protection Agency

View shared research outputs
Researchain Logo
Decentralizing Knowledge