Satomi Negoro
National Agriculture and Food Research Organization
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Satomi Negoro.
DNA Research | 2014
Hideki Hirakawa; Kenta Shirasawa; Koji Miyatake; Tsukasa Nunome; Satomi Negoro; Akio Ohyama; Hirotaka Yamaguchi; Shusei Sato; Sachiko Isobe; Satoshi Tabata; Hiroyuki Fukuoka
Unlike other important Solanaceae crops such as tomato, potato, chili pepper, and tobacco, all of which originated in South America and are cultivated worldwide, eggplant (Solanum melongena L.) is indigenous to the Old World and in this respect it is phylogenetically unique. To broaden our knowledge of the genomic nature of solanaceous plants further, we dissected the eggplant genome and built a draft genome dataset with 33,873 scaffolds termed SME_r2.5.1 that covers 833.1 Mb, ca. 74% of the eggplant genome. Approximately 90% of the gene space was estimated to be covered by SME_r2.5.1 and 85,446 genes were predicted in the genome. Clustering analysis of the predicted genes of eggplant along with the genes of three other solanaceous plants as well as Arabidopsis thaliana revealed that, of the 35,000 clusters generated, 4,018 were exclusively composed of eggplant genes that would perhaps confer eggplant-specific traits. Between eggplant and tomato, 16,573 pairs of genes were deduced to be orthologous, and 9,489 eggplant scaffolds could be mapped onto the tomato genome. Furthermore, 56 conserved synteny blocks were identified between the two species. The detailed comparative analysis of the eggplant and tomato genomes will facilitate our understanding of the genomic architecture of solanaceous plants, which will contribute to cultivation and further utilization of these crops.
Journal of Experimental Botany | 2010
Hirotaka Yamaguchi; Hiroyuki Fukuoka; Tomohito Arao; Akio Ohyama; Tsukasa Nunome; Koji Miyatake; Satomi Negoro
Solanum torvum Sw. cv. Torubamubiga (TB) is a low cadmium (Cd)-accumulating plant. To elucidate the molecular mechanisms of the Cd acclimation process in TB roots, transcriptional regulation was analysed in response to mild Cd treatment: 0.1 μM CdCl2 in hydroponic solution. A unigene set consisting of 6296 unigene sequences was constructed from 18 816 TB cDNAs. The distribution of functional categories was similar to tomato, while 330 unigenes were suggested to be TB specific. For expression profiling, the SuperSAGE method was adapted for use with Illumina sequencing technology. Expression tag libraries were constructed from Cd-treated (for 3 h, 1 d, and 3 d) and untreated roots, and 34 269 species of independent tags were collected. Moreover, 6237 tags were ascribed to the TB or eggplant (aubergine) unigene sequences. Time-course changes were examined, and 2049 up- and 2022 down-regulated tags were identified. Although no tags annotated to metal transporter genes were significantly regulated, a tag annotated to AtFRD3, a xylem-loading citrate transporter, was down-regulated. In addition to induction of heavy metal chaperone proteins, antioxidative and sulphur-assimilating enzymes were induced, confirming that oxidative stress developed even using a mild Cd concentration. Rapid repression of dehydration-related transcription factors and aquaporin isoforms suggests that dehydration stress is a potential constituent of Cd-induced biochemical impediments. These transcriptional changes were also confirmed by real-time reverse transcription-PCR. Further additions of TB unigene sequences and functional analysis of the regulated tags will reveal the molecular basis of the Cd acclimation process, including the low Cd-accumulating characteristics of TB.
Plant Molecular Biology Reporter | 2006
Tsukasa Nunome; Satomi Negoro; Koji Miyatake; Hirotaka Yamaguchi; Hiroyuki Fukuoka
An improved protocol for constructing microsatellite-enriched libraries was developed. The procedure depends on digesting genomic DNA with a restriction enzyme that generates blunt-ends, and on ligating linkers that, when dimerized, create a restriction site for a different blunt-end producing restriction enzyme. Efficient ligation of linkers to the genomic DNA fragments is achieved by including restriction enzymes in the ligation reaction that eliminate unwanted ligation products. After ligation, the reaction mixture is subjected to subtractive hybridization without purification. DNA fragments containing microsatellites are captured by biotin-labeled oligonucleotide repeats and recovered using streptavidin-coated beads. The recovered fragments are amplified by PCR using the linker sequence as primer, and cloned directly into a plasmid vector. The linker has the sequence GTTT on the 5′ end, which promotes efficient adenylation of the 3′ ends of the PCR products. Consequently, the amplified fragments could be cloned into vectors without purification. This procedure enables efficient enrichment and cloning of microsatellite sequences, resulting in a library with a low level of redundancy.
Theoretical and Applied Genetics | 2017
Akio Ohyama; Kenta Shirasawa; Hiroshi Matsunaga; Satomi Negoro; Koji Miyatake; Hirotaka Yamaguchi; Tsukasa Nunome; Hiroyoshi Iwata; Hiroyuki Fukuoka; Takeshi Hayashi
Key messageUsing newly developed euchromatin-derived genomic SSR markers and a flexible Bayesian mapping method, 13 significant agricultural QTLs were identified in a segregating population derived from a four-way cross of tomato.AbstractSo far, many QTL mapping studies in tomato have been performed for progeny obtained from crosses between two genetically distant parents, e.g., domesticated tomatoes and wild relatives. However, QTL information of quantitative traits related to yield (e.g., flower or fruit number, and total or average weight of fruits) in such intercross populations would be of limited use for breeding commercial tomato cultivars because individuals in the populations have specific genetic backgrounds underlying extremely different phenotypes between the parents such as large fruit in domesticated tomatoes and small fruit in wild relatives, which may not be reflective of the genetic variation in tomato breeding populations. In this study, we constructed F2 population derived from a cross between two commercial F1 cultivars in tomato to extract QTL information practical for tomato breeding. This cross corresponded to a four-way cross, because the four parental lines of the two F1 cultivars were considered to be the founders. We developed 2510 new expressed sequence tag (EST)-based (euchromatin-derived) genomic SSR markers and selected 262 markers from these new SSR markers and publicly available SSR markers to construct a linkage map. QTL analysis for ten agricultural traits of tomato was performed based on the phenotypes and marker genotypes of F2 plants using a flexible Bayesian method. As results, 13 QTL regions were detected for six traits by the Bayesian method developed in this study.
Theoretical and Applied Genetics | 2009
Tsukasa Nunome; Satomi Negoro; Izumi Kono; Hiroyuki Kanamori; Koji Miyatake; Hirotaka Yamaguchi; Akio Ohyama; Hiroyuki Fukuoka
Molecular Breeding | 2009
Akio Ohyama; Erika Asamizu; Satomi Negoro; Koji Miyatake; Hirotaka Yamaguchi; Satoshi Tabata; Hiroyuki Fukuoka
Theoretical and Applied Genetics | 2012
Hiroyuki Fukuoka; Koji Miyatake; Tsukasa Nunome; Satomi Negoro; Kenta Shirasawa; Sachiko Isobe; Erika Asamizu; Hirotaka Yamaguchi; Akio Ohyama
Gene | 2010
Hiroyuki Fukuoka; Hirotaka Yamaguchi; Tsukasa Nunome; Satomi Negoro; Koji Miyatake; Akio Ohyama
Theoretical and Applied Genetics | 2012
Koji Miyatake; Takeo Saito; Satomi Negoro; Hirotaka Yamaguchi; Tsukasa Nunome; Akio Ohyama; Hiroyuki Fukuoka
Breeding Science | 2008
Hiroyuki Fukuoka; Koji Miyatake; Satomi Negoro; Tsukasa Nunome; Akio Ohyama; Hirotaka Yamaguchi
Collaboration
Dive into the Satomi Negoro's collaboration.
Commonwealth Scientific and Industrial Research Organisation
View shared research outputs