Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Satoru Arai is active.

Publication


Featured researches published by Satoru Arai.


PLOS ONE | 2009

Evolutionary Insights from a Genetically Divergent Hantavirus Harbored by the European Common Mole (Talpa europaea)

Hae Ji Kang; Shannon N. Bennett; Laarni Sumibcay; Satoru Arai; Andrew G. Hope; Gabor Mocz; Jin Won Song; Joseph A. Cook; Richard Yanagihara

Background The discovery of genetically distinct hantaviruses in shrews (Order Soricomorpha, Family Soricidae) from widely separated geographic regions challenges the hypothesis that rodents (Order Rodentia, Family Muridae and Cricetidae) are the primordial reservoir hosts of hantaviruses and also predicts that other soricomorphs harbor hantaviruses. Recently, novel hantavirus genomes have been detected in moles of the Family Talpidae, including the Japanese shrew mole (Urotrichus talpoides) and American shrew mole (Neurotrichus gibbsii). We present new insights into the evolutionary history of hantaviruses gained from a highly divergent hantavirus, designated Nova virus (NVAV), identified in the European common mole (Talpa europaea) captured in Hungary. Methodology/Principal Findings Pair-wise alignment and comparison of the full-length S- and L-genomic segments indicated moderately low sequence similarity of 54–65% and 46–63% at the nucleotide and amino acid levels, respectively, between NVAV and representative rodent- and soricid-borne hantaviruses. Despite the high degree of sequence divergence, the predicted secondary structure of the NVAV nucleocapsid protein exhibited the characteristic coiled-coil domains at the amino-terminal end, and the L-segment motifs, typically found in hantaviruses, were well conserved. Phylogenetic analyses, using maximum-likelihood and Bayesian methods, showed that NVAV formed a distinct clade that was evolutionarily distant from all other hantaviruses. Conclusions Newly identified hantaviruses harbored by shrews and moles support long-standing virus-host relationships and suggest that ancestral soricomorphs, rather than rodents, may have been the early or original mammalian hosts.


Virology Journal | 2007

Seewis virus, a genetically distinct hantavirus in the Eurasian common shrew (Sorex araneus)

Jin-Won Song; Se Hun Gu; Shannon N. Bennett; Satoru Arai; Maria Puorger; Monika Hilbe; Richard Yanagihara

More than 20 years ago, hantaviral antigens were reported in tissues of the Eurasian common shrew (Sorex araneus), Eurasian water shrew (Neomys fodiens) and common mole (Talpa europea), suggesting that insectivores, or soricomorphs, might serve as reservoirs of unique hantaviruses. Using RT-PCR, sequences of a genetically distinct hantavirus, designated Seewis virus (SWSV), were amplified from lung tissue of a Eurasian common shrew, captured in October 2006 in Graubünden, Switzerland. Pair-wise analysis of the full-length S and partial M and L segments of SWSV indicated approximately 55%–72% similarity with hantaviruses harbored by Murinae, Arvicolinae, Neotominae and Sigmodontinae rodents. Phylogenetically, SWSV grouped with other recently identified shrew-borne hantaviruses. Intensified efforts are underway to clarify the genetic diversity of SWSV throughout the geographic range of the Eurasian common shrew, as well as to determine its relevance to human health.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Molecular phylogeny of a newfound hantavirus in the Japanese shrew mole (Urotrichus talpoides)

Satoru Arai; Satoshi D. Ohdachi; Mitsuhiko Asakawa; Hae Ji Kang; Gabor Mocz; Jiro Arikawa; Nobuhiko Okabe; Richard Yanagihara

Recent molecular evidence of genetically distinct hantaviruses in shrews, captured in widely separated geographical regions, corroborates decades-old reports of hantavirus antigens in shrew tissues. Apart from challenging the conventional view that rodents are the principal reservoir hosts, the recently identified soricid-borne hantaviruses raise the possibility that other soricomorphs, notably talpids, similarly harbor hantaviruses. In analyzing RNA extracts from lung tissues of the Japanese shrew mole (Urotrichus talpoides), captured in Japan between February and April 2008, a hantavirus genome, designated Asama virus (ASAV), was detected by RT-PCR. Pairwise alignment and comparison of the S-, M-, and L-segment nucleotide and amino acid sequences indicated that ASAV was genetically more similar to hantaviruses harbored by shrews than by rodents. However, the predicted secondary structure of the ASAV nucleocapsid protein was similar to that of rodent- and shrew-borne hantaviruses, exhibiting the same coiled-coil helix at the amino terminus. Phylogenetic analyses, using the maximum-likelihood method and other algorithms, consistently placed ASAV with recently identified soricine shrew-borne hantaviruses, suggesting a possible host-switching event in the distant past. The discovery of a mole-borne hantavirus enlarges our concepts about the complex evolutionary history of hantaviruses.


Virology | 2009

Host switch during evolution of a genetically distinct hantavirus in the American shrew mole (Neurotrichus gibbsii)

Hae Ji Kang; Shannon N. Bennett; Laurie Dizney; Laarni Sumibcay; Satoru Arai; Luis A. Ruedas; Jin-Won Song; Richard Yanagihara

A genetically distinct hantavirus, designated Oxbow virus (OXBV), was detected in tissues of an American shrew mole (Neurotrichus gibbsii), captured in Gresham, Oregon, in September 2003. Pairwise analysis of full-length S- and M- and partial L-segment nucleotide and amino acid sequences of OXBV indicated low sequence similarity with rodent-borne hantaviruses. Phylogenetic analyses using maximum-likelihood and Bayesian methods, and host-parasite evolutionary comparisons, showed that OXBV and Asama virus, a hantavirus recently identified from the Japanese shrew mole (Urotrichus talpoides), were related to soricine shrew-borne hantaviruses from North America and Eurasia, respectively, suggesting parallel evolution associated with cross-species transmission.


Journal of Clinical Microbiology | 2001

Human Babesiosis in Japan: Epizootiologic Survey of Rodent Reservoir and Isolation of New Type of Babesia microti-Like Parasite

Masayoshi Tsuji; Qiang Wei; Aya Zamoto; Chiharu Morita; Satoru Arai; Tsunezo Shiota; Masato Fujimagari; Asao Itagaki; Hiromi Fujita; Chiaki Ishihara

ABSTRACT We have carried out epizootiologic surveys at various sites in Japan to investigate wild animals that serve as reservoirs for the agents of human babesiosis in the country. Small mammals comprising six species, Apodemus speciosus, Apodemus argenteus, Clethrionomys rufocanus, Eothenomys smithii, Crocidura dsinezumi, and Sorex unguiculatus, were trapped at various places, including Hokkaido, Chiba, Shiga, Hyogo, Shimane, and Tokushima Prefectures. Animals harboring Babesia microti-like parasites were detected in all six prefectures. Inoculation of their blood samples into hamsters gave rise to a total of 20 parasite isolates; 19 were from A. speciosus, and the other 1 was from C. rufocanus. Sequencing of the parasite small-subunit rRNA gene (rDNA) sequence revealed that 2 of the 20 isolates were classified as Kobe type because their rDNAs were identical to that of the Kobe strain (the strain from the Japanese index case). The other 18 isolates were classified as a new type, designated the Hobetsu type, because they all shared an identical rDNA sequence which differed significantly from both that of Kobe-type isolates and that of northeastern United States B. microti (U.S. type). The parasites with Kobe-, Hobetsu- and U.S.-type rDNAs were phylogenetically closely related to each other but clearly different from each other antigenically. The isolates from rodents were demonstrated to be infective for human erythrocytes by inoculation into SCID mice whose erythrocytes had been replaced with human erythrocytes. The results suggest that a new type of B. microti-like parasite, namely, the Hobetsu type, is the major one which is prevalent among Japanese wild rodents, that A. speciosus serves as a major reservoir for both Kobe- and Hobetsu-type B. microti-like parasites, and that C. rufocanus may also be an additional reservoir on Hokkaido Island.


Microbiology and Immunology | 2007

Molecular survey of Babesia microti, Ehrlichia species and Candidatus Neoehrlichia mikurensis in wild rodents from Shimane Prefecture, Japan

Kenji Tabara; Satoru Arai; Takako Kawabuchi; Asao Itagaki; Chiaki Ishihara; Hiroshi Satoh; Nobuhiko Okabe; Masayoshi Tsuji

A significant number of patients are diagnosed with “fevers of unknown origin” (FUO) in Shimane Prefecture in Japan where tick‐borne diseases are endemic. We conducted molecular surveys for Babesia microti, Ehrlichia species, and Candidatus Neoehrlichia mikurensis in 62 FUO cases and 62 wild rodents from Shimane Prefecture, Japan. PCR using primers specific for the Babesia 18S small‐subunit rRNA (rDNA) gene and Anaplasmataceae groESL amplified products from 45% (28/62) and 25.8% (16/62) of captured mice, respectively. Of the 28 18S rDNA PCR positives, 23 and five samples were positive for Hobetsu‐ and Kobe‐type B. microti, respectively. In contrast, of the 16 groESL PCR positives, eight, one and seven samples were positive for Ehrlichia muris, Ehrlichia sp. HF565 and Candidatus N. mikurensis, respectively. Inoculation of selected blood samples into Golden Syrian hamsters indicated the presence of Hobetsu‐ and Kobe‐type B. microti in four and one sample, respectively. Isolation of the latter strain was considered important as previous studies suggested that the distribution of this type was so far confined to Awaji Island in Hyogo Prefecture, where the first case of transfusion‐associated human babesiosis originated. DNA samples from 62 FUO human cases tested negative for B. microti 18S rDNA gene, Anaplasmataceae groESL gene, Rickettsia japonica 17K genus‐common antigen gene and Orientia tsutsugamushi 56K antigen gene by PCRs. We also conducted seroepidemiological surveys on 62 human sera collected in Shimane Prefecture from the FUO patients who were suspected of carrying tick‐borne diseases. However, indirect immunofluorescent antibody tests using B. microti‐ and E. muris‐infected cells detected IgG against E. muris in only a single positive sample. This study demonstrates the presence of several potentially important tick‐borne pathogens in Shimane Prefecture and suggests the need for further study on the causative agents of FUOs.


Virus Research | 2014

Hantaviruses: rediscovery and new beginnings.

Richard Yanagihara; Se Hun Gu; Satoru Arai; Hae Ji Kang; Jin Won Song

Virus and host gene phylogenies, indicating that antigenically distinct hantaviruses (family Bunyaviridae, genus Hantavirus) segregate into clades, which parallel the molecular evolution of rodents belonging to the Murinae, Arvicolinae, Neotominae and Sigmodontinae subfamilies, suggested co-divergence of hantaviruses and their rodent reservoirs. Lately, this concept has been vigorously contested in favor of preferential host switching and local host-specific adaptation. To gain insights into the host range, spatial and temporal distribution, genetic diversity and evolutionary origins of hantaviruses, we employed reverse transcription-polymerase chain reaction to analyze frozen, RNAlater(®)-preserved and ethanol-fixed tissues from 1546 shrews (9 genera and 47 species), 281 moles (8 genera and 10 species) and 520 bats (26 genera and 53 species), collected in Europe, Asia, Africa and North America during 1980-2012. Thus far, we have identified 24 novel hantaviruses in shrews, moles and bats. That these newfound hantaviruses are geographically widespread and genetically more diverse than those harbored by rodents suggests that the evolutionary history of hantaviruses is far more complex than previously conjectured. Phylogenetic analyses indicate four distinct clades, with the most divergent comprising hantaviruses harbored by the European mole and insectivorous bats, with evidence for both co-divergence and host switching. Future studies will provide new knowledge about the transmission dynamics and pathogenic potential of these newly discovered, still-orphan, non-rodent-borne hantaviruses.


Vector-borne and Zoonotic Diseases | 2010

Novel hantavirus in the flat-skulled shrew (Sorex roboratus).

Hae Ji Kang; Satoru Arai; Andrew G. Hope; Joseph A. Cook; Richard Yanagihara

Genetically distinct hantaviruses have been identified recently in multiple species of shrews (Order Soricomorpha, Family Soricidae) in Eurasia and North America. To corroborate decades-old reports of hantaviral antigens in shrews from Russia, archival liver and lung tissues from 4 Siberian large-toothed shrews (Sorex daphaenodon), 5 Eurasian least shrews (Sorex minutissimus), 12 flat-skulled shrews (Sorex roboratus), and 18 tundra shrews (Sorex tundrensis), captured in the Sakha Republic in northeastern Siberia during July and August 2006, were analyzed for hantavirus RNA by reverse transcription-polymerase chain reaction. A novel hantavirus, named Kenkeme virus, was detected in a flat-skulled shrew. Sequence analysis of the full-length S and partial M and L segments indicated that Kenkeme virus was genetically and phylogenetically distinct from Seewis virus harbored by the Eurasian common shrew (Sorex araneus), as well as all other rodent-, soricid-, and talpid-borne hantaviruses.


Virology Journal | 2009

Genetic diversity and phylogeography of Seewis virus in the Eurasian common shrew in Finland and Hungary

Hae Ji Kang; Satoru Arai; Andrew G. Hope; Jin Won Song; Joseph A. Cook; Richard Yanagihara

Recent identification of a newfound hantavirus, designated Seewis virus (SWSV), in the Eurasian common shrew (Sorex araneus), captured in Switzerland, corroborates decades-old reports of hantaviral antigens in this shrew species from Russia. To ascertain the spatial or geographic variation of SWSV, archival liver tissues from 88 Eurasian common shrews, trapped in Finland in 1982 and in Hungary during 1997, 1999 and 2000, were analyzed for hantavirus RNAs by reverse transcription-polymerase chain reaction. SWSV RNAs were detected in 12 of 22 (54.5%) and 13 of 66 (19.7%) Eurasian common shrews from Finland and Hungary, respectively. Phylogenetic analyses of S- and L-segment sequences of SWSV strains, using maximum likelihood and Bayesian methods, revealed geographic-specific genetic variation, similar to the phylogeography of rodent-borne hantaviruses, suggesting long-standing hantavirus-host co-evolutionary adaptation.


Virology | 2012

Divergent ancestral lineages of newfound hantaviruses harbored by phylogenetically related crocidurine shrew species in Korea

Satoru Arai; Se Hun Gu; Luck Ju Baek; Kenji Tabara; Shannon N. Bennett; Hong Shik Oh; Nobuhiro Takada; Hae Ji Kang; Keiko Tanaka-Taya; Shigeru Morikawa; Nobuhiko Okabe; Richard Yanagihara; Jin Won Song

Spurred by the recent isolation of a novel hantavirus, named Imjin virus (MJNV), from the Ussuri white-toothed shrew (Crocidura lasiura), targeted trapping was conducted for the phylogenetically related Asian lesser white-toothed shrew (Crocidura shantungensis). Pair-wise alignment and comparison of the S, M and L segments of a newfound hantavirus, designated Jeju virus (JJUV), indicated remarkably low nucleotide and amino acid sequence similarity with MJNV. Phylogenetic analyses, using maximum likelihood and Bayesian methods, showed divergent ancestral lineages for JJUV and MJNV, despite the close phylogenetic relationship of their reservoir soricid hosts. Also, no evidence of host switching was apparent in tanglegrams, generated by TreeMap 2.0β.

Collaboration


Dive into the Satoru Arai's collaboration.

Top Co-Authors

Avatar

Keiko Tanaka-Taya

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Richard Yanagihara

University of Hawaii at Manoa

View shared research outputs
Top Co-Authors

Avatar

Nobuhiko Okabe

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Hae Ji Kang

University of Hawaii at Manoa

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Se Hun Gu

University of Hawaii at Manoa

View shared research outputs
Top Co-Authors

Avatar

Shannon N. Bennett

University of Hawaii at Manoa

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hiroshi Satoh

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge