Satoru B. Ohkubo
Hokkaido University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Satoru B. Ohkubo.
Proceedings of the National Academy of Sciences of the United States of America | 2006
Fumio Inagaki; Marcel M. M. Kuypers; Urumu Tsunogai; Jun-ichiro Ishibashi; Ko-ichi Nakamura; Tina Treude; Satoru B. Ohkubo; Miwako Nakaseama; Kaul Gena; Hisako Hirayama; Takuro Nunoura; Ken Takai; Bo Barker Jørgensen; Koki Horikoshi; Antje Boetius
Increasing levels of CO2 in the atmosphere are expected to cause climatic change with negative effects on the earths ecosystems and human society. Consequently, a variety of CO2 disposal options are discussed, including injection into the deep ocean. Because the dissolution of CO2 in seawater will decrease ambient pH considerably, negative consequences for deep-water ecosystems have been predicted. Hence, ecosystems associated with natural CO2 reservoirs in the deep sea, and the dynamics of gaseous, liquid, and solid CO2 in such environments, are of great interest to science and society. We report here a biogeochemical and microbiological characterization of a microbial community inhabiting deep-sea sediments overlying a natural CO2 lake at the Yonaguni Knoll IV hydrothermal field, southern Okinawa Trough. We found high abundances (>109 cm−3) of microbial cells in sediment pavements above the CO2 lake, decreasing to strikingly low cell numbers (107 cm−3) at the liquid CO2/CO2-hydrate interface. The key groups in these sediments were as follows: (i) the anaerobic methanotrophic archaea ANME-2c and the Eel-2 group of Deltaproteobacteria and (ii) sulfur-metabolizing chemolithotrophs within the Gamma- and Epsilonproteobacteria. The detection of functional genes related to one-carbon assimilation and the presence of highly 13C-depleted archaeal and bacterial lipid biomarkers suggest that microorganisms assimilating CO2 and/or CH4 dominate the liquid CO2 and CO2-hydrate-bearing sediments. Clearly, the Yonaguni Knoll is an exceptional natural laboratory for the study of consequences of CO2 disposal as well as of natural CO2 reservoirs as potential microbial habitats on early Earth and other celestial bodies.
Applied and Environmental Microbiology | 2010
Takuro Nunoura; Hanako Oida; Miwako Nakaseama; Ayako Kosaka; Satoru B. Ohkubo; Toru Kikuchi; Hiromi Kazama; Shoko Hosoi-Tanabe; Ko-ichi Nakamura; Masataka Kinoshita; Hisako Hirayama; Fumio Inagaki; Urumu Tsunogai; Jun-ichiro Ishibashi; Ken Takai
ABSTRACT A variety of archaeal lineages have been identified using culture-independent molecular phylogenetic surveys of microbial habitats occurring in deep-sea hydrothermal environments such as chimney structures, sediments, vent emissions, and chemosynthetic macrofauna. With the exception of a few taxa, most of these archaea have not yet been cultivated, and their physiological and metabolic traits remain unclear. In this study, phylogenetic diversity and distribution profiles of the archaeal genes encoding small subunit (SSU) rRNA, methyl coenzyme A (CoA) reductase subunit A, and the ammonia monooxygenase large subunit were characterized in hydrothermally influenced sediments at the Yonaguni Knoll IV hydrothermal field in the Southern Okinawa Trough. Sediment cores were collected at distances of 0.5, 2, or 5 m from a vent emission (90°C). A moderate temperature gradient extends both horizontally and vertically (5 to 69°C), indicating the existence of moderate mixing between the hydrothermal fluid and the ambient sediment pore water. The mixing of reductive hot hydrothermal fluid and cold ambient sediment pore water establishes a wide spectrum of physical and chemical conditions in the microbial habitats that were investigated. Under these different physico-chemical conditions, variability in archaeal phylotype composition was observed. The relationship between the physical and chemical parameters and the archaeal phylotype composition provides important insight into the ecophysiological requirements of uncultivated archaeal lineages in deep-sea hydrothermal vent environments, giving clues for approximating culture conditions to be used in future culturing efforts.
Rapid Communications in Mass Spectrometry | 2008
Urumu Tsunogai; Tadasuke Kido; Akinari Hirota; Satoru B. Ohkubo; Daisuke D. Komatsu; Fumiko Nakagawa
We present a method for high-sensitivity nitrogen isotopic analysis of particulate organic nitrogen (PON) in seawater and freshwater, for the purpose of determining the aquatic nitrogen fixation rate through the 15N2 tracer technique for samples that contain a low abundance of organisms. The method is composed of the traditional oxidation/reduction methods, such as the oxidation of PON to nitrate (NO3*) using persulfate, the reduction of NO3* to nitrite (NO2*) using spongy cadmium, and further reduction of NO2* to nitrous oxide (N2O) using sodium azide. Then, N2O is purged from the water and trapped cryogenically with subsequent release into a gas chromatography column to analyze the stable nitrogen isotopic composition using continuous-flow isotope ratio mass spectrometry (CF-IRMS) by simultaneously monitoring the NO+ ion currents at masses 30, 31, and 32. The nitrogen isotopic fractionation was consistent within each batch of analysis. The standard deviation of sample measurements was less than 0.3 per thousand for samples containing PON of more than 50 nmolN, and 0.5 per thousand for those of more than 20 nmolN, by subtracting the contribution of blank nitrogen, 8 +/- 2 nmol at final N2O. By using this method, we can determine delta15N for lower quantities of PON better than by other methods, so we can reduce the quantities of water samples needed for incubation to determine the nitrogen fixation rate. In addition, we can expand the method to determine the nitrogen isotopic composition of organic nitrogen in general, such as that of total dissolved nitrogen (TDN; sum of NO3*, NO2*, ammonium, and DON), by applying the method to filtrates.
Rapid Communications in Mass Spectrometry | 2018
Kazuya Takahashi; Yoichi Nakai; Yuko Motizuki; Toshiyuki Ino; Shigeru Ito; Satoru B. Ohkubo; Takeshi Minami; Yuichi Takaku; Yoshitaka Yamaguchi; Miho Tanaka; Hideaki Motoyama
RATIONALE Sulfur is widely distributed in nature, and sulfur isotopic measurements have been applied to elucidate the origin and transport of sulfuric compounds in the lithosphere, biosphere, and atmosphere. Analyses of samples containing small amounts of sulfur, such as the Antarctic ice core samples analyzed herein, require a high-sensitivity analytical method. METHODS We developed a high-sensitivity sulfur isotopic ratio (δ34 S value) analytical system equipped with an elemental analyzer, a cryo-flow device, and an isotope ratio mass spectrometer, and established a measurement and calibration procedure. RESULTS Using this system, we precisely measured the δ34 S values of samples containing 5-40 nmol sulfate. Test runs were performed on samples from the Antarctic shallow ice core DF01, and the data obtained were consistent with those obtained by previous studies that reported δ34 S values for Antarctic snow and ice samples of more than 200 g (containing more than 150 nmol sulfate). Among the analyzed samples, one showed a peak sulfate concentration in its depth profile that is considered to have resulted from a large volcanic eruption. The δ34 S value obtained at that depth in the sample was distinct from values at other depths and consistent with reported values for volcanic sulfates. CONCLUSIONS The analytical system developed herein is a powerful tool for trace sulfur isotopic analyses. The results obtained from the DF01 ice core samples are the first step towards elucidating high-time-resolution (less than 1 year) paleo-environmental changes by sulfur isotopic analyses.
Geochemical Journal | 2007
Yayoi Hongo; Hajime Obata; Toshitaka Gamo; Miwako Nakaseama; Jun-ichiro Ishibashi; Uta Konno; Shunsuke Saegusa; Satoru B. Ohkubo; Urumu Tsunogai
Marine Chemistry | 2009
Akinari Hirota; Akira Ijiri; Daisuke D. Komatsu; Satoru B. Ohkubo; Fumiko Nakagawa; Urumu Tsunogai
Applied and Environmental Microbiology | 2009
Takuro Nunoura; Hanako Oida; Miwako Nakaseama; Ayako Kosaka; Satoru B. Ohkubo; Takashi Kikuchi; Hiromi Kazama; S. H Tanabe; Koshiro Nakamura; Mitsuhiro Kinoshita; Hisako Hirayama; Fumio Inagaki; Urumu Tsunogai; Jun-ichiro Ishibashi; Ken Takai
Archive | 2010
Daisuke D. Komatsu; S. Daita; Uta Konno; Satoru B. Ohkubo; Fumiko Nakagawa; Urumu Tsunogai
Archive | 2010
Daisuke D. Komatsu; Urumu Tsunogai; S. Daita; Uta Konno; Satoru B. Ohkubo; Fumiko Nakagawa
Archive | 2007
Akihiko Hirota; Akira Ijiri; Daisuke D. Komatsu; Satoru B. Ohkubo; Fumiko Nakagawa; Urumu Tsunogai