Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Satoru Ishikawa is active.

Publication


Featured researches published by Satoru Ishikawa.


Scientific Reports | 2012

Characterizing the role of rice NRAMP5 in Manganese, Iron and Cadmium Transport

Yasuhiro Ishimaru; Ryuichi Takahashi; Khurram Bashir; Hugo Shimo; Takeshi Senoura; Kazuhiko Sugimoto; Kazuko Ono; Masahiro Yano; Satoru Ishikawa; Tomohito Arao; Hiromi Nakanishi; Naoko K. Nishizawa

Metals like manganese (Mn) and iron (Fe) are essential for metabolism, while cadmium (Cd) is toxic for virtually all living organisms. Understanding the transport of these metals is important for breeding better crops. We have identified that OsNRAMP5 contributes to Mn, Fe and Cd transport in rice. OsNRAMP5 expression was restricted to roots epidermis, exodermis, and outer layers of the cortex as well as in tissues around the xylem. OsNRAMP5 localized to the plasma membrane, and complemented the growth of yeast strains defective in Mn, Fe, and Cd transport. OsNRAMP5 RNAi (OsNRAMP5i) plants accumulated less Mn in the roots, and less Mn and Fe in shoots, and xylem sap. The suppression of OsNRAMP5 promoted Cd translocation to shoots, highlighting the importance of this gene for Cd phytoremediation. These data reveal that OsNRAMP5 contributes to Mn, Cd, and Fe transport in rice and is important for plant growth and development.


Journal of Experimental Botany | 2011

The OsNRAMP1 iron transporter is involved in Cd accumulation in rice

Ryuichi Takahashi; Yasuhiro Ishimaru; Takeshi Senoura; Hugo Shimo; Satoru Ishikawa; Tomohito Arao; Hiromi Nakanishi; Naoko K. Nishizawa

Cadmium (Cd) is a heavy metal toxic to humans and the accumulation of Cd in the rice grain is a major agricultural problem, particularly in Asia. The role of the iron transporter OsNRAMP1 in Cd uptake and transport in rice was investigated here. An OsNRAMP1:GFP fusion protein was localized to the plasma membrane in onion epidermal cells. The growth of yeast expressing OsNRAMP1 was impaired in the presence of Cd compared with yeast transformed with an empty vector. Moreover, the Cd content of OsNRAMP1-expressing yeast exceeded that of the vector control. The expression of OsNRAMP1 in the roots was higher in a high Cd-accumulating cultivar (Habataki) than a low Cd-accumulating cultivar (Sasanishiki) regardless of the presence of Cd, and the amino acid sequence of OsNRAMP1 showed 100% identity between Sasanishiki and Habataki. Over-expression of OsNRAMP1 in rice increased Cd accumulation in the leaves. These results suggest that OsNRAMP1 participates in cellular Cd uptake and Cd transport within plants, and the higher expression of OsNRAMP1 in the roots could lead to an increase in Cd accumulation in the shoots. Our results indicated that OsNRAMP1 is an important protein in high-level Cd accumulation in rice.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Ion-beam irradiation, gene identification, and marker-assisted breeding in the development of low-cadmium rice

Satoru Ishikawa; Yasuhiro Ishimaru; Masato Igura; Masato Kuramata; Tadashi Abe; Takeshi Senoura; Yoshihiro Hase; Tomohito Arao; Naoko K. Nishizawa; Hiromi Nakanishi

Rice (Oryza sativa L.) grain is a major dietary source of cadmium (Cd), which is toxic to humans, but no practical technique exists to substantially reduce Cd contamination. Carbon ion-beam irradiation produced three rice mutants with <0.05 mg Cd⋅kg−1 in the grain compared with a mean of 1.73 mg Cd⋅kg−1 in the parent, Koshihikari. We identified the gene responsible for reduced Cd uptake and developed a strategy for marker-assisted selection of low-Cd cultivars. Sequence analysis revealed that these mutants have different mutations of the same gene (OsNRAMP5), which encodes a natural resistance-associated macrophage protein. Functional analysis revealed that the defective transporter protein encoded by the mutant osnramp5 greatly decreases Cd uptake by roots, resulting in decreased Cd in the straw and grain. In addition, we developed DNA markers to facilitate marker-assisted selection of cultivars carrying osnramp5. When grown in Cd-contaminated paddy fields, the mutants have nearly undetectable Cd in their grains and exhibit no agriculturally or economically adverse traits. Because mutants produced by ion-beam radiation are not transgenic plants, they are likely to be accepted by consumers and thus represent a practical choice for rice production worldwide.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Low-affinity cation transporter (OsLCT1) regulates cadmium transport into rice grains

Shimpei Uraguchi; Takehiro Kamiya; Takuya Sakamoto; Koji Kasai; Yutaka Sato; Yoshiaki Nagamura; Akiko Yoshida; Junko Kyozuka; Satoru Ishikawa; Toru Fujiwara

Accumulation of cadmium (Cd) in rice (Oryza sativa L.) grains poses a potential health problem, especially in Asia. Most Cd in rice grains accumulates through phloem transport, but the molecular mechanism of this transport has not been revealed. In this study, we identified a rice Cd transporter, OsLCT1, involved in Cd transport to the grains. OsLCT1-GFP was localized at the plasma membrane in plant cells, and OsLCT1 showed Cd efflux activity in yeast. In rice plants, strong OsLCT1 expression was observed in leaf blades and nodes during the reproductive stage. In the uppermost node, OsLCT1 transcripts were detected around large vascular bundles and in diffuse vascular bundles. RNAi-mediated knockdown of OsLCT1 did not affect xylem-mediated Cd transport but reduced phloem-mediated Cd transport. The knockdown plants of OsLCT1 accumulated approximately half as much Cd in the grains as did the control plants. The content of other metals in rice grains and plant growth were not negatively affected by OsLCT1 suppression. These results suggest that OsLCT1 functions at the nodes in Cd transport into grains and that in a standard japonica cultivar, the regulation of OsLCT1 enables the generation of “low-Cd rice” without negative effects on agronomical traits. These findings identify a transporter gene for phloem Cd transport in plants.


International Journal of Urology | 2010

Real-time Virtual Sonography for navigation during targeted prostate biopsy using magnetic resonance imaging data.

Tomoaki Miyagawa; Satoru Ishikawa; Tomokazu Kimura; Takahiro Suetomi; Masakazu Tsutsumi; Toshiyuki Irie; Masanao Kondoh; Tsuyoshi Mitake

Objectives:  To evaluate the effectiveness of the medical navigation technique, namely, Real‐time Virtual Sonography (RVS), for targeted prostate biopsy.


Journal of Experimental Botany | 2010

A major quantitative trait locus for increasing cadmium-specific concentration in rice grain is located on the short arm of chromosome 7

Satoru Ishikawa; Tadashi Abe; Masato Kuramata; Masayuki Yamaguchi; Tsuyu Ando; Toshio Yamamoto; Masahiro Yano

Large phenotypic variations in the cadmium (Cd) concentration of rice grains and shoots have been observed. However, the genetic control of Cd accumulation remains poorly understood. Quantitative trait loci (QTLs) determining the grain Cd concentration of rice grown in a Cd-polluted paddy field were identified. Using a mapping population consisting of 85 backcross inbred lines derived from a cross between the low-Cd-accumulating cultivar Sasanishiki (japonica) and high-Cd-accumulating cultivar Habataki (indica), two QTLs for increasing grain Cd concentration were found on chromosomes 2 and 7. A major-effect QTL, qGCd7 (QTL for grain Cd on chromosome 7), was detected on the short arm of chromosome 7. It accounted for 35.5% of all phenotypic variance in backcross inbred lines. qGCd7 was not genetically related to any QTLs for concentrations of essential trace metals (Cu, Fe, Mn, and Zn) or those for agronomic traits such as heading date, suggesting that this QTL is specific to Cd. Furthermore, the existence of qGCd7 was confirmed using chromosome segment substitution lines (CSSLs) and an F2 population from a cross between the target CSSL and Sasanishiki grown in a Cd-polluted paddy soil. To our knowledge, qGCd7 is a novel QTL with major effects for increasing grain Cd concentrations.


Journal of Experimental Botany | 2012

Role of the node in controlling traffic of cadmium, zinc, and manganese in rice

Noriko Yamaguchi; Satoru Ishikawa; Tadashi Abe; Koji Baba; Tomohito Arao; Yasuko Terada

Heavy metals are transported to rice grains via the phloem. In rice nodes, the diffuse vascular bundles (DVBs), which enclose the enlarged elliptical vascular bundles (EVBs), are connected to the panicle and have a morphological feature that facilitates xylem-to-phloem transfer. To find a mechanism for restricting cadmium (Cd) transport into grains, the distribution of Cd, zinc (Zn), manganese (Mn), and sulphur (S) around the vascular bundles in node I (the node beneath the panicle) of Oryza sativa ‘Koshihikari’ were compared 1 week after heading. Elemental maps of Cd, Zn, Mn, and S in the vascular bundles of node I were obtained by synchrotron micro-X-ray fluorescence spectrometry and electron probe microanalysis. In addition, Cd K-edge microfocused X-ray absorption near-edge structure analyses were used to identify the elements co-ordinated with Cd. Both Cd and S were mainly distributed in the xylem of the EVB and in the parenchyma cell bridge (PCB) surrounding the EVB. Zn accumulated in the PCB, and Mn accumulated around the protoxylem of the EVB. Cd was co-ordinated mainly with S in the xylem of the EVB, but with both S and O in the phloem of the EVB and in the PCB. The EVB in the node retarded horizontal transport of Cd toward the DVB. By contrast, Zn was first stored in the PCB and then efficiently transferred toward the DVB. Our results provide evidence that transport of Cd, Zn, and Mn is differentially controlled in rice nodes, where vascular bundles are functionally interconnected.


American Journal of Roentgenology | 2010

Real-Time Balloon Inflation Elastography for Prostate Cancer Detection and Initial Evaluation of Clinicopathologic Analysis

Masakazu Tsutsumi; Tomoaki Miyagawa; Takeshi Matsumura; Tsuyoshi Endo; Syuya Kandori; Tatsuro Shimokama; Satoru Ishikawa

OBJECTIVE The use of elastography is limited for prostate cancer detection because of the difficulty in obtaining stable and reproducible images. To overcome these limitations, we developed a new technique called real-time balloon inflation elastography (RBIE); with RBIE, balloon inflation and deflation are used in place of manual compression. We present the accuracy and feasibility of the RBIE technique for detecting prostate cancer. MATERIALS AND METHODS The results of a pathologic analysis of 55 prostatectomy specimens were compared with elastographic moving images obtained at the time of biopsy of the prostate. RESULTS The RBIE technique generated stable and repeatable elastographic moving images. The percentage of images affected by artifact due to slippage in the compression plane was reduced to 1% using the RBIE method compared with 32% using the manual compression method. With regard to tumor location, elastographic moving images obtained using the RBIE technique were in complete agreement with clinicopathologic evaluation of tumor location in eight cases (15%), showed partial agreement in 43 cases (78%), and disagreed in four cases (7%). In three different regions of the prostate, 84% of anterior tumors, 85% of middle tumors, and 60% of posterior tumors were detected. The tumor detection rates by Gleason score were 60% in tumors with a Gleason score of 5 or 6, 73% in tumors with a Gleason score of 7, 72% in tumors with a Gleason score of 8, and 74% in tumors with a Gleason score of 9 or 10. CONCLUSION The RBIE method improved the quality of elastographic moving images compared with the manual compression method. High-grade tumors and tumors of impalpable regions of the prostate were more frequently detected using RBIE. We conclude that RBIE is a promising method with which to detect prostate cancer.


BMC Plant Biology | 2011

Real-time imaging and analysis of differences in cadmium dynamics in rice cultivars (Oryza sativa) using positron-emitting107Cd tracer

Satoru Ishikawa; Nobuo Suzui; Sayuri Ito-Tanabata; Satomi Ishii; Masato Igura; Tadashi Abe; Masato Kuramata; Naoki Kawachi; Shu Fujimaki

BackgroundRice is a major source of dietary intake of cadmium (Cd) for populations that consume rice as a staple food. Understanding how Cd is transported into grains through the whole plant body is necessary for reducing rice Cd concentrations to the lowest levels possible, to reduce the associated health risks. In this study, we have visualized and quantitatively analysed the real-time Cd dynamics from roots to grains in typical rice cultivars that differed in grain Cd concentrations. We used positron-emitting107Cd tracer and an innovative imaging technique, the positron-emitting tracer imaging system (PETIS). In particular, a new method for direct and real-time visualization of the Cd uptake by the roots in the culture was first realized in this work.ResultsImaging and quantitative analyses revealed the different patterns in time-varying curves of Cd amounts in the roots of rice cultivars tested. Three low-Cd accumulating cultivars (japonica type) showed rapid saturation curves, whereas three high-Cd accumulating cultivars (indica type) were characterized by curves with a peak within 30 min after107Cd supplementation, and a subsequent steep decrease resulting in maintenance of lower Cd concentrations in their roots. This difference in Cd dynamics may be attributable to OsHMA3 transporter protein, which was recently shown to be involved in Cd storage in root vacuoles and not functional in the high-Cd accumulating cultivars. Moreover, the PETIS analyses revealed that the high-Cd accumulating cultivars were characterized by rapid and abundant Cd transfer to the shoots from the roots, a faster transport velocity of Cd to the panicles, and Cd accumulation at high levels in their panicles, passing through the nodal portions of the stems where the highest Cd intensities were observed.ConclusionsThis is the first successful visualization and quantification of the differences in whole-body Cd transport from the roots to the grains of intact plants within rice cultivars that differ in grain Cd concentrations, by using PETIS, a real-time imaging method.


Plant and Cell Physiology | 2012

Expressing ScACR3 in Rice Enhanced Arsenite Efflux and Reduced Arsenic Accumulation in Rice Grains

Guilan Duan; Takehiro Kamiya; Satoru Ishikawa; Tomohito Arao; Toru Fujiwara

Arsenic (As) accumulation in rice grain poses a serious health risk to populations with high rice consumption. Extrusion of arsenite [As(III)] by ScAcr3p is the major arsenic detoxification mechanism in Saccharomyces cerevisiae. However, ScAcr3p homolog is absent in higher plants, including rice. In this study, ScACR3 was introduced into rice and expressed under the control of the Cauliflower mosaic virus (CaMV) 35S promoter. In the transgenic lines, As concentrations in shoots and roots were about 30% lower than in the wild type, while the As translocation factors were similar between transgenic lines and the wild type. The roots of transgenic plants exhibited significantly higher As efflux activities than those of the wild type. Within 24 h exposure to 10 μM arsenate [As(V)], roots of ScACR3-expressing plants extruded 80% of absorbed As(V) to the external solution as As(III), while roots of the wild type extruded 50% of absorbed As(V). Additionally, by exposing the As-containing rice plants to an As-lacking solution for 24 h, about 30% of the total As derived from pre-treatment was extruded to the external solution by ScACR3-expressing plants, while about 15% of As was extruded by wild-type plants. Importantly, ScACR3 expression significantly reduced As accumulation in rice straws and grains. When grown in flooded soil irrigated with As(III)-containing water, the As concentration in husk and brown rice of the transgenic lines was reduced by 30 and 20%, respectively, compared with the wild type. This study reports a potential strategy to reduce As accumulation in the food chain by expressing heterologous genes in crops.

Collaboration


Dive into the Satoru Ishikawa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge