Satoshi Ishido
Hyogo College of Medicine
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Satoshi Ishido.
Journal of Virology | 2000
Satoshi Ishido; Chunyang Wang; Bok-Soo Lee; George B. Cohen; Jae U. Jung
ABSTRACT The T-cell-mediated immune response plays a central role in the defense against intracellular pathogens. To avoid this immune response, viruses have evolved elaborate mechanisms that target and modulate many different aspects of the hosts immune system. A target common to many of these viruses is the major histocompatibility complex (MHC) class I molecules. Kaposis sarcoma-associated herpesvirus (KSHV) encodes K3 and K5 zinc finger membrane proteins which remove MHC class I molecules from the cell surface. K3 and K5 exhibit 40% amino acid identity to each other and localize primarily near the plasma membrane. While K3 and K5 dramatically downregulated class I molecules, they displayed different specificities in downregulation of HLA allotypes. K5 significantly downregulated HLA-A and -B and downregulated HLA-C only weakly, but not HLA-E, whereas K3 downregulated all four HLA allotypes. This selective downregulation of HLA allotypes by K5 was partly due to differences in amino acid sequences in their transmembrane regions. Biochemical analyses demonstrated that while K3 and K5 did not affect expression and intracellular transport of class I molecules, their expression induced rapid endocytosis of the molecules. These results demonstrate that KSHV has evolved a novel immune evasion mechanism by harboring similar but distinct genes, K3 and K5, which target MHC class I molecules in different ways.
The EMBO Journal | 2006
Ryo Yonashiro; Satoshi Ishido; Shinkou Kyo; Toshifumi Fukuda; Eiji Goto; Yohei Matsuki; Mari Ohmura-Hoshino; Kiyonao Sada; Hak Hotta; Hirohei Yamamura; Ryoko Inatome; Shigeru Yanagi
In this study, we have identified a novel mitochondrial ubiquitin ligase, designated MITOL, which is localized in the mitochondrial outer membrane. MITOL possesses a Plant Homeo‐Domain (PHD) motif responsible for E3 ubiquitin ligase activity and predicted four‐transmembrane domains. MITOL displayed a rapid degradation by autoubiquitination activity in a PHD‐dependent manner. HeLa cells stably expressing a MITOL mutant lacking ubiquitin ligase activity or MITOL‐deficient cells by small interfering RNA showed an aberrant mitochondrial morphology such as fragmentation, suggesting the enhancement of mitochondrial fission by MITOL dysfunction. Indeed, a dominant‐negative expression of Drp1 mutant blocked mitochondrial fragmentation induced by MITOL depletion. We found that MITOL associated with and ubiquitinated mitochondrial fission protein hFis1 and Drp1. Pulse–chase experiment showed that MITOL overexpression increased turnover of these fission proteins. In addition, overexpression phenotype of hFis1 could be reverted by MITOL co‐overexpression. Our finding indicates that MITOL plays a critical role in mitochondrial dynamics through the control of mitochondrial fission proteins.
Nature Immunology | 2008
Louise J. Young; Nicholas S. Wilson; Petra Schnorrer; Anna I Proietto; Toine ten Broeke; Yohei Matsuki; Adele M. Mount; Gabrielle T. Belz; Meredith O'Keeffe; Mari Ohmura-Hoshino; Satoshi Ishido; Willem Stoorvogel; William R. Heath; Ken Shortman; Jose A. Villadangos
The importance of conventional dendritic cells (cDCs) in the processing and presentation of antigen is well established, but the contribution of plasmacytoid dendritic cells (pDCs) to these processes, and hence to T cell immunity, remains unclear. Here we showed that unlike cDCs, pDCs continued to synthesize major histocompatibility complex (MHC) class II molecules and the MHC class II ubiquitin ligase MARCH1 long after activation. Sustained MHC class II–peptide complex formation, ubiquitination and turnover rendered pDCs inefficient in the presentation of exogenous antigens but enabled pDCs to continuously present endogenous viral antigens in their activated state. As the antigen-presenting abilities of cDCs and pDCs are fundamentally distinct, these two cell types may activate largely nonoverlapping repertoires of CD4+ T cells.
Journal of Experimental Medicine | 2004
Daisuke Uchida; Shigetsugu Hatakeyama; Akemi Matsushima; Hongwei Han; Satoshi Ishido; Hak Hotta; Jun Kudoh; Nobuyoshi Shimizu; Vassilis Doucas; Keiichi I. Nakayama; Noriyuki Kuroda; Mitsuru Matsumoto
Autoimmune regulator (AIRE) gene mutation is responsible for the development of autoimmune-polyendocrinopathy-candidiasis ectodermal dystrophy, an organ-specific autoimmune disease with monogenic autosomal recessive inheritance. AIRE is predominantly expressed in medullary epithelial cells of the thymus and is considered to play important roles in the establishment of self-tolerance. AIRE contains two plant homeodomain (PHD) domains, and the novel role of PHD as an E3 ubiquitin (Ub) ligase has just emerged. Here we show that the first PHD (PHD1) of AIRE mediates E3 ligase activity. The significance of this finding was underscored by the fact that disease-causing missense mutations in the PHD1 (C311Y and P326Q) abolished its E3 ligase activity. These results add a novel enzymatic function for AIRE and suggest an indispensable role of the Ub proteasome pathway in the establishment of self-tolerance, in which AIRE is involved.
The EMBO Journal | 2007
Yohei Matsuki; Mari Ohmura-Hoshino; Eiji Goto; Masami Aoki; Mari Mito-Yoshida; Mika Uematsu; Takanori Hasegawa; Haruhiko Koseki; Osamu Ohara; Manabu Nakayama; Kiminori Toyooka; Ken Matsuoka; Hak Hotta; Akitsugu Yamamoto; Satoshi Ishido
The presence of post‐translational regulation of MHC class II (MHC II) under physiological conditions has been demonstrated recently in dendritic cells (DCs) that potently function as antigen‐presenting cells (APCs). Here, we report that MARCH‐I, an E3 ubiquitin ligase, plays a pivotal role in the post‐translational regulation of MHC II in B cells. MARCH‐I expression was particularly high in B cells, and the forced expression of MARCH‐I induced the ubiquitination of MHC II. In B cells from MARCH‐I‐deficient mice (MARCH‐I KO), the half‐life of surface MHC II was prolonged and the ubiquitinated form of MHC II completely disappeared. In addition, MARCH‐I‐deficient B cells highly expressed exogenous antigen‐loaded MHC II on their surface and showed high ability to present exogenous antigens. These results suggest that the function of MHC II in B cells is regulated through ubiquitination by MARCH‐I.
Journal of Virology | 2008
Lin Deng; Tetsuya Adachi; Kikumi Kitayama; Yasuaki Bungyoku; Sohei Kitazawa; Satoshi Ishido; Ikuo Shoji; Hak Hotta
ABSTRACT We previously reported that cells harboring the hepatitis C virus (HCV) RNA replicon as well as those expressing HCV NS3/4A exhibited increased sensitivity to suboptimal doses of apoptotic stimuli to undergo mitochondrion-mediated apoptosis (Y. Nomura-Takigawa, et al., J. Gen. Virol. 87:1935-1945, 2006). Little is known, however, about whether or not HCV infection induces apoptosis of the virus-infected cells. In this study, by using the chimeric J6/JFH1 strain of HCV genotype 2a, we demonstrated that HCV infection induced cell death in Huh7.5 cells. The cell death was associated with activation of caspase 3, nuclear translocation of activated caspase 3, and cleavage of DNA repair enzyme poly(ADP-ribose) polymerase, which is known to be an important substrate for activated caspase 3. These results suggest that HCV-induced cell death is, in fact, apoptosis. Moreover, HCV infection activated Bax, a proapoptotic member of the Bcl-2 family, as revealed by its conformational change and its increased accumulation on mitochondrial membranes. Concomitantly, HCV infection induced disruption of mitochondrial transmembrane potential, followed by mitochondrial swelling and release of cytochrome c from mitochondria. HCV infection also caused oxidative stress via increased production of mitochondrial superoxide. On the other hand, HCV infection did not mediate increased expression of glucose-regulated protein 78 (GRP78) or GRP94, which are known as endoplasmic reticulum (ER) stress-induced proteins; this result suggests that ER stress is not primarily involved in HCV-induced apoptosis in our experimental system. Taken together, our present results suggest that HCV infection induces apoptosis of the host cell through a Bax-triggered, mitochondrion-mediated, caspase 3-dependent pathway(s).
Molecular Cell | 2013
Ayumu Sugiura; Shun Nagashima; Takeshi Tokuyama; Taku Amo; Yohei Matsuki; Satoshi Ishido; Yoshihisa Kudo; Heidi M. McBride; Toshifumi Fukuda; Nobuko Matsushita; Ryoko Inatome; Shigeru Yanagi
The mitochondrial ubiquitin ligase MITOL regulates mitochondrial dynamics. We report here that MITOL regulates mitochondria-associated endoplasmic reticulum (ER) membrane (MAM) domain formation through mitofusin2 (Mfn2). MITOL interacts with and ubiquitinates mitochondrial Mfn2, but not ER-associated Mfn2. Mutation analysis identified a specific interaction between MITOL C-terminal domain and Mfn2 HR1 domain. MITOL mediated lysine-63-linked polyubiquitin chain addition to Mfn2, but not its proteasomal degradation. MITOL knockdown inhibited Mfn2 complex formation and caused Mfn2 mislocalization and MAM dysfunction. Sucrose-density gradient centrifugation and blue native PAGE retardation assay demonstrated that MITOL is required for GTP-dependent Mfn2 oligomerization. MITOL knockdown reduced Mfn2 GTP binding, resulting in reduced GTP hydrolysis. We identified K192 in the GTPase domain of Mfn2 as a major ubiquitination site for MITOL. A K192R mutation blocked oligomerization even in the presence of GTP. Taken together, these results suggested that MITOL regulates ER tethering to mitochondria by activating Mfn2 via K192 ubiquitination.
Journal of Experimental Medicine | 2011
Lina E. Tze; Keisuke Horikawa; Heather Domaschenz; Debbie R. Howard; Carla M. Roots; Robert J. Rigby; David A. Way; Mari Ohmura-Hoshino; Satoshi Ishido; Christopher E. Andoniou; Mariapia A. Degli-Esposti; Christopher C. Goodnow
By opposing IL-10–driven, MARCH1-mediated ubiquitination and degradation of MHC class II, CD83 may boost the immunogenicity of dendritic cells.
Journal of Immunology | 2006
Mari Ohmura-Hoshino; Yohei Matsuki; Masami Aoki; Eiji Goto; Mari Mito; Mika Uematsu; Terutaka Kakiuchi; Hak Hotta; Satoshi Ishido
We previously reported a novel E3 ubiquitin ligase (E3), designated as c-MIR, which targets B7-2 to lysosomal degradation and down-regulates the B7-2 surface expression through ubiquitination of its cytoplasmic tail. B7-2 is well known as a costimulatory molecule for Ag presentation, suggesting that the manipulation of c-MIR expression modulates immune responses in vivo. To examine this hypothesis, we generated genetically modified mice in which c-MIR was expressed under an invariant chain (Ii) promoter. Dendritic cells derived from genetically engineered mice showed low ability to present Ags. In addition, these mice showed resistance to the onset of experimental autoimmune encephalomyelitis and an impaired development of CD4 T cells in the thymus and the periphery. These findings led us to conclude that MHC class II (MHC II) is an additional target for c-MIR. Indeed, forced expression of c-MIR in several B cell lines down-regulated the surface expression of MHC II, and down-regulation was found to depend on the presence of a single lysine residue in the cytoplasmic tail of the I-A β-chain. In a reconstitution system using 293T cells, we found that the lysine residue at position 225 in the I-A β-chain was ubiquitinated by c-MIR. To our knowledge, c-MIR is the first example of an E3 that is capable of inhibiting MHC II expression. Our findings suggest that c-MIR might potently regulate immune responses in vivo.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Even Walseng; Kazuyuki Furuta; Berta Bosch; Karis A. Weih; Yohei Matsuki; Oddmund Bakke; Satoshi Ishido; Paul A. Roche
The expression and turnover of MHC class II-peptide complexes (pMHC-II) on the surface of dendritic cells (DCs) is essential for their ability to activate CD4 T cells efficiently. The half-life of surface pMHC-II is significantly greater in activated (mature) DCs than in resting (immature) DCs, but the molecular mechanism leading to this difference remains unknown. We now show that ubiquitination of pMHC-II by the E3 ubiquitin ligase membrane-associated RING-CH 1 (March-I) regulates surface expression, intracellular distribution, and survival of pMHC-II in DCs. DCs isolated from March-I–KO mice express very high levels of pMHC-II on the plasma membrane even before DC activation. Although ubiquitination does not affect the kinetics of pMHC-II endocytosis from the surface of DCs, the survival of pMHC-II is enhanced in DCs obtained from March-I–deficient and MHC-II ubiquitination-mutant mice. Using pMHC-II–specific mAb, we show that immature DCs generate large amounts of pMHC-II that are remarkably stable under conditions in which pMHC-II ubiquitination is blocked. Thus, the cellular distribution and stability of surface pMHC-II in DCs is regulated by ubiquitin-dependent degradation of internalized pMHC-II.