Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Satoshi Iwase is active.

Publication


Featured researches published by Satoshi Iwase.


The Journal of Physiology | 2002

Human muscle sympathetic neural and haemodynamic responses to tilt following spaceflight

Benjamin D. Levine; James A. Pawelczyk; Andrew C. Ertl; James F. Cox; Julie H. Zuckerman; André Diedrich; Italo Biaggioni; Chester A. Ray; Michael L. Smith; Satoshi Iwase; Mitsuru Saito; Yoshiki Sugiyama; Tadaaki Mano; Rong Zhang; Ken-ichi Iwasaki; Lynda D. Lane; Jay C. Buckey; William H. Cooke; Friedhelm J. Baisch; David Robertson; C. Gunnar Blomqvist

Orthostatic intolerance is common when astronauts return to Earth: after brief spaceflight, up to two‐thirds are unable to remain standing for 10 min. Previous research suggests that susceptible individuals are unable to increase their systemic vascular resistance and plasma noradrenaline concentrations above pre‐flight upright levels. In this study, we tested the hypothesis that adaptation to the microgravity of space impairs sympathetic neural responses to upright posture on Earth. We studied six astronauts ∼72 and 23 days before and on landing day after the 16 day Neurolab space shuttle mission. We measured heart rate, arterial pressure and cardiac output, and calculated stroke volume and total peripheral resistance, during supine rest and 10 min of 60 deg upright tilt. Muscle sympathetic nerve activity was recorded in five subjects, as a direct measure of sympathetic nervous system responses. As in previous studies, mean (±s.e.m.) stroke volume was lower (46 ± 5 vs. 76 ± 3 ml, P= 0.017) and heart rate was higher (93 ± 1 vs. 74 ± 4 beats min−1, P= 0.002) during tilt after spaceflight than before spaceflight. Total peripheral resistance during tilt post flight was higher in some, but not all astronauts (1674 ± 256 vs. 1372 ± 62 dynes s cm−5, P= 0.32). No crew member exhibited orthostatic hypotension or presyncopal symptoms during the 10 min of postflight tilting. Muscle sympathetic nerve activity was higher post flight in all subjects, in supine (27 ± 4 vs. 17 ± 2 bursts min−1, P= 0.04) and tilted (46 ± 4 vs. 38 ± 3 bursts min−1, P= 0.01) positions. A strong (r2= 0.91–1.00) linear correlation between left ventricular stroke volume and muscle sympathetic nerve activity suggested that sympathetic responses were appropriate for the haemodynamic challenge of upright tilt and were unaffected by spaceflight. We conclude that after 16 days of spaceflight, muscle sympathetic nerve responses to upright tilt are normal.


Clinical Neurophysiology | 2006

Microneurography as a tool in clinical neurophysiology to investigate peripheral neural traffic in humans.

Tadaaki Mano; Satoshi Iwase; Shinobu Toma

Microneurography is a method using metal microelectrodes to investigate directly identified neural traffic in myelinated as well as unmyelinated efferent and afferent nerves leading to and coming from muscle and skin in human peripheral nerves in situ. The present paper reviews how this technique has been used in clinical neurophysiology to elucidate the neural mechanisms of autonomic regulation, motor control and sensory functions in humans under physiological and pathological conditions. Microneurography is particularly important to investigate efferent and afferent neural traffic in unmyelinated C fibers. The recording of efferent discharges in postganglionic sympathetic C efferent fibers innervating muscle and skin (muscle sympathetic nerve activity; MSNA and skin sympathetic nerve activity; SSNA) provides direct information about neural control of autonomic effector organs including blood vessels and sweat glands. Sympathetic microneurography has become a potent tool to reveal neural functions and dysfunctions concerning blood pressure control and thermoregulation. This recording has been used not only in wake conditions but also in sleep to investigate changes in sympathetic neural traffic during sleep and sleep-related events such as sleep apnea. The same recording was also successfully carried out by astronauts during spaceflight. Recordings of afferent discharges from muscle mechanoreceptors have been used to understand the mechanisms of motor control. Muscle spindle afferent information is particularly important for the control of fine precise movements. It may also play important roles to predict behavior outcomes during learning of a motor task. Recordings of discharges in myelinated afferent fibers from skin mechanoreceptors have provided not only objective information about mechanoreceptive cutaneous sensation but also the roles of these signals in fine motor control. Unmyelinated mechanoreceptive afferent discharges from hairy skin seem to be important to convey cutaneous sensation to the central structures related to emotion. Recordings of afferent discharges in thin myelinated and unmyelinated fibers from nociceptors in muscle and skin have been used to provide information concerning pain. Recordings of afferent discharges of different types of cutaneous C-nociceptors identified by marking method have become an important tool to reveal the neural mechanisms of cutaneous sensations such as an itch. No direct microneurographic evidence has been so far proved regarding the effects of sympathoexcitation on sensitization of muscle and skin sensory receptors at least in healthy humans.


Journal of The Autonomic Nervous System | 1997

Altered response in cutaneous sympathetic outflow to mental and thermal stimuli in primary palmoplantar hyperhidrosis

Satoshi Iwase; Takehiko Ikeda; Hiroki Kitazawa; Shigetaka Hakusui; Junichi Sugenoya; Tadaaki Mano

Skin sympathetic nerve activities (SSNAs) were recorded simultaneously from the tibial and peroneal nerves by microneurography at an ambient temperature of 25 degrees C in five subjects with primary palmoplantar hyperhidrosis. The resting of the tibial SSNA innervating the sole (glabrous skin) increased moderately (36.5 +/- 1.5 bursts/min), while mental arithmetic provoked marked responses (1,003.3 +/- 457.4% compared with the resting level) in the hyperhidrosis group compared with the control normohidrosis group (n = 5, 25.3 +/ 4.2 bursts/min and 142.2 +/- 58.4%, respectively). Differentiation of the tibial SSNA into sudomotor (innervating sweat glands) and vasoconstrictor (innervating presphincter of skin vessels) revealed that this SSNA enhancement was attributable to not only sudomotor but also vasoconstrictor components during mental arithmetic. In contrast, the responses in the peroneal SSNA (innervating the dorsum pedis, hairy skin) of the hyperhidrosis group were only slightly changed, exhibiting no significant difference from those in the normohidrosis group. Reflex bursts elicited by sound and electric stimulation were normal in amplitude and latency. When the ambient temperature was elevated to 30 degrees C, the tibial SSNAs became more enhanced than did the peroneal SSNAs. The tibial SSNA was markedly enhanced in the hyperhidrosis group (290.0 +/- 78.5%) compared with the normohidrosis group (78.3 +/- 25.4%). We conclude that the excessive responses in SSNA to the plantar glabrous skin to both mental and thermal stimuli may be responsible for the profuse sweating in subjects with primary palmoplantar hyperhidrosis.


The Journal of Physiology | 2002

Cardiovascular and sympathetic neural responses to handgrip and cold pressor stimuli in humans before, during and after spaceflight

Qi Fu; Benjamin D. Levine; James A. Pawelczyk; Andrew C. Ertl; André Diedrich; James F. Cox; Julie H. Zuckerman; Chester A. Ray; Michael L. Smith; Satoshi Iwase; Mitsuru Saito; Yoshiki Sugiyama; Tadaaki Mano; Rong Zhang; Ken-ichi Iwasaki; Lynda D. Lane; Jay C. Buckey; William H. Cooke; Rose Marie Robertson; Friedhelm J. Baisch; C. Gunnar Blomqvist; David Robertson; Italo Biaggioni

Astronauts returning to Earth have reduced orthostatic tolerance and exercise capacity. Alterations in autonomic nervous system and neuromuscular function after spaceflight might contribute to this problem. In this study, we tested the hypothesis that exposure to microgravity impairs autonomic neural control of sympathetic outflow in response to peripheral afferent stimulation produced by handgrip and a cold pressor test in humans. We studied five astronauts ≈72 and 23 days before, and on landing day after the 16 day Neurolab (STS‐90) space shuttle mission, and four of the astronauts during flight (day 12 or 13). Heart rate, arterial pressure and peroneal muscle sympathetic nerve activity (MSNA) were recorded before and during static handgrip sustained to fatigue at 40 % of maximum voluntary contraction, followed by 2 min of circulatory arrest pre‐, in‐ and post‐flight. The cold pressor test was applied only before (five astronauts) and during flight (day 12 or 13, four astronauts). Mean (±s.e.m.) baseline heart rates and arterial pressures were similar among pre‐, in‐ and post‐flight measurements. At the same relative fatiguing force, the peak systolic pressure and mean arterial pressure during static handgrip were not different before, during and after spaceflight. The peak diastolic pressure tended to be higher post‐ than pre‐flight (112 ± 6 vs. 99 ± 5 mmHg, P= 0.088). Contraction‐induced rises in heart rate were similar pre‐, in‐ and post‐flight. MSNA was higher post‐flight in all subjects before static handgrip (26 ± 4 post‐ vs. 15 ± 4 bursts min−1 pre‐flight, P= 0.017). Contraction‐evoked peak MSNA responses were not different before, during, and after spaceflight (41 ± 4, 38 ± 5 and 46 ± 6 bursts min−1, all P > 0.05). MSNA during post‐handgrip circulatory arrest was higher post‐ than pre‐ or in‐flight (41 ± 1 vs. 33 ± 3 and 30 ± 5 bursts min−1, P= 0.038 and 0.036). Similarly, responses of MSNA and blood pressure to the cold pressor test were well maintained in‐flight. We conclude that modulation of muscle sympathetic neural outflow by muscle metaboreceptors and skin nociceptors is preserved during short duration spaceflight.


The Journal of Physiology | 2002

Influence of microgravity on astronauts' sympathetic and vagal responses to Valsalva's manoeuvre

James F. Cox; Kari U. O. Tahvanainen; Tom Kuusela; Benjamin D. Levine; William H. Cooke; Tadaaki Mano; Satoshi Iwase; Mitsuru Saito; Yoshiki Sugiyama; Andrew C. Ertl; Italo Biaggioni; André Diedrich; Rose Marie Robertson; Julie H. Zuckerman; Lynda D. Lane; Chester A. Ray; Ronald J. White; James A. Pawelczyk; Jay C. Buckey; Friedhelm J. Baisch; C. Gunnar Bomqvist; David Robertson

When astronauts return to Earth and stand, their heart rates may speed inordinately, their blood pressures may fall, and some may experience frank syncope. We studied brief autonomic and haemodynamic transients provoked by graded Valsalva manoeuvres in astronauts on Earth and in space, and tested the hypothesis that exposure to microgravity impairs sympathetic as well as vagal baroreflex responses. We recorded the electrocardiogram, finger photoplethysmographic arterial pressure, respiration and peroneal nerve muscle sympathetic activity in four healthy male astronauts (aged 38–44 years) before, during and after the 16 day Neurolab space shuttle mission. Astronauts performed two 15 s Valsalva manoeuvres at each pressure, 15 and 30 mmHg, in random order. Although no astronaut experienced presyncope after the mission, microgravity provoked major changes. For example, the average systolic pressure reduction during 30 mmHg straining was 27 mmHg pre‐flight and 49 mmHg in flight. Increases in muscle sympathetic nerve activity during straining were also much greater in space than on Earth. For example, mean normalized sympathetic activity increased 445 % during 30 mmHg straining on earth and 792 % in space. However, sympathetic baroreflex gain, taken as the integrated sympathetic response divided by the maximum diastolic pressure reduction during straining, was the same in space and on Earth. In contrast, vagal baroreflex gain, particularly during arterial pressure reductions, was diminished in space. This and earlier research suggest that exposure of healthy humans to microgravity augments arterial pressure and sympathetic responses to Valsalva straining and differentially reduces vagal, but not sympathetic baroreflex gain.


Journal of The Autonomic Nervous System | 1994

Sleep-related changes in human muscle and skin sympathetic nerve activities

Shigeo Takeuchi; Satoshi Iwase; Tadaaki Mano; Hisashi Okada; Yoshiki Sugiyama; T. Watanabe

To characterize the features of sympathetic nerve activity during non-REM sleep, we measured the muscle and skin sympathetic nerve activities (MSNA and SSNA, respectively) using a double recording microneurographic technique. Eight healthy volunteers were monitored by polysomnography (including EEG, EOG, EMG, and ECG) and received acoustic stimuli (880 Hz, 125 ms) during sleep stage 2. The specific discharge properties of MSNA during wakefulness included pulse-synchronicity, short burst duration and a non-responsiveness to arousal stimuli. These were considered to be generated by an inhibitory input from the baroreceptors to the cardiovascular center. In contrast, SSNA lacked pulse-synchronicity, had longer bursts, and was responsive to a variety of stimuli. Burst rates of MSNA and SSNA were reduced during sleep stages 1 and 2 (light sleep) vs. during a wakefulness. Both MSNA and SSNA appeared to be related to spontaneously occurring K-complexes. The baroreflex latency (from the ECG R-wave to the integrated MSNA burst peak) was constant at approximately 1.20 s during sleep, suggesting that pulse-synchronicity was maintained. The MSNA burst evolution time (interval between initiation of the burst and its peak) became longer with a transition to deeper non-REM sleep stages, whereas the SSNA burst evolution times remained constant. K-complexes induced by acoustic stimuli were frequently accompanied by MSNA and/or SSNA. MSNA responded to acoustic stimuli during light sleep, but some bursts lacked a close relation in time to cardiac rhythm.(ABSTRACT TRUNCATED AT 250 WORDS)


Journal of The Autonomic Nervous System | 1997

Response to vestibular stimulation of sympathetic outflow to muscle in humans.

Jian Cui; Chiaki Mukai; Satoshi Iwase; Naoki Sawasaki; Hiroki Kitazawa; Tadaaki Mano; Yoshiki Sugiyama; Yoshiro Wada

The objective of the present study was to determine the effect of vestibular stimulation on the sympathetic outflow to muscle in humans. Fourteen healthy volunteers were studied while in the supine position with electrocardiography, blood pressure monitoring and electro-oculography. The muscle sympathetic nerve activity (MSNA) was recorded directly from the bilateral tibial nerves by using microneurographic double recording technique. Caloric vestibular stimulation was loaded by alternate irrigation with 50 ml of cold (10 degrees C) water and 50 ml of hot (44 degrees C) water into the left and right external meatus. After cold water irrigation, two MSNA response peaks were elicited, respectively, before and after the maximum slow phase velocity (SPV) of nystagmus. The first peak of the MSNA enhancement was caused by non-specific factors because its time course coincided with that in cold pressor test with immersion of the subjects hand in ice/water (4 degrees C). Transient suppression of MSNA after cold water irrigation in the period of maximum SPV of nystagmus was observed by cross correlogram analysis between the SPV of the nystagmus and MSNA. After hot water irrigation, only one MSNA response peak was elicited after the period of strong nystagmus. The second peak of MSNA enhancement evoked by cold irrigation (379.4 +/- 221.8%, with the control value set as 100%, mean +/- SE) was significantly higher than that evoked by hot irrigation (243.0 +/- 14.5%). The degree of MSNA enhancement by either cold (the second peak) or hot stimulation was proportional to the maximum SPV of the nystagmus. There was no significant difference between the MSNA responses ipsilateral to and contralateral to the irrigated side. In conclusion, the caloric vestibular stimulation can influence the bilateral sympathetic outflow to muscle in humans. The degree of MSNA enhancement is proportional to the magnitude of vestibular excitement indicated by maximum slow phase velocity of the nystagmus.


The Journal of Physiology | 1998

Vasodilator component in sympathetic nerve activity destined for the skin of the dorsal foot of mildly heated humans

Junichi Sugenoya; Satoshi Iwase; Tadaaki Mano; Yoshiki Sugiyama; Tokuo Ogawa; Tetsunari Nishiyama; Naoki Nishimura; Tomomi Kimura

1 Skin sympathetic nerve activity (SSNA) was recorded in seven male subjects from the peroneal nerve by microneurography, and the temporal correspondence of spontaneously occurring SSNA bursts with vasodilatation and sweating responses on the dorsal foot was studied during a mild body heating at rest. 2 Some SSNA bursts were followed by a sweat expulsion with a latency of 2.4 ± 0.4 s, and some bursts by a transient vasodilatation with a latency of 2.2 ± 0.4 s (means ± s.d.). SSNA bursts followed both by a sweat expulsion and by a vasodilatation response (Type 1), those followed only by a sweat expulsion (Type 2) and those followed only by a vasodilatation response (Type 3) were 70 %, 10 % and 1 % of the total bursts examined, respectively. 3 For Type 1 bursts, there was a significant, but weak linear relationship among the burst amplitude, the amplitude of the corresponding vasodilatation and the amplitude of the corresponding sweat expulsion. 4 It was concluded that SSNA contains vasodilatory activity which is synchronous with sudomotor nerve activity. The results suggest that such vasodilatory activity contributes to sustaining the sweat gland function by supplying sufficient blood.


European Journal of Applied Physiology | 1990

Identification of sudomotor activity in cutaneous sympathetic nerves using sweat expulsion as the effector response

Junichi Sugenoya; Satoshi Iwase; Tadaaki Mano; Tokuo Ogawa

SummaryIn a warm environment at ambient temperatures between 25° and 38°C (relative humidity 50%–60%) the relationship between sympathetic activity in cutaneous nerves (SSA) and pulses of sweat expulsion was investigated in five young male subjects. The SSA was recorded from the peroneal nerve using a microelectrode. Sweat expulsion was identified on the sweat rate records obtained from skin areas on the dorsal side of the foot, for spontaneous sweating and drug-induced sweating, using capacitance hygrometry. Sweat expulsion was always preceded by bursts of SSA with latencies of 2.4–3.0 s. This temporal relationship between bursts of SSA and sweat expulsion was noted not only in various degrees of thermal sweating but also in the sweating evoked by arousal stimuli, or by painful electric stimulation. The amplitude of the sudomotor burst was linearly related to the maximal rate of increase of the corresponding sweat expulsion, the amplitude of the expulsion and the integrated amount of sweat produced for the duration of the expulsion. The results provide direct evidence that sweat expulsion reflects directly centrally-derived sudomotor activity.


European Journal of Applied Physiology | 1990

Changes in muscle sympathetic nerve activity and calf blood flow during static handgrip exercise

Mitsuru Saito; Tadaaki Mano; Satoshi Iwase

SummaryTo test the function of sympathetic vascoconstrictor nerves on blood flow in resting limbs during static muscle contraction, muscle sympathetic nerve activity (MSNA) to the leg muscle was recorded from the tibial nerve microneurographically before, during and after 2 min of static handgrip (SHG). Simultaneously, calf blood flow (CBF) was measured by strain gauge plethysmography. An increase in MSNA, a decrease in CBF and an increase in calf vascular resistance (CVR) in the same resting limb occurred concomitantly during SHG. However, the increase in CVR was blunted in the second minute of handgrip when MSNA was still increasing. The results indicated that the decrease of CBF during SHG reflects the increase in MSNA, while the dissociation between MSNA and CVR at the later period of SHG may be related to metabolic change produced by the vasoconstriction.

Collaboration


Dive into the Satoshi Iwase's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maki Sato

Aichi Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yoko Inukai

Aichi Medical University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge