Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Satoshi Mikawa is active.

Publication


Featured researches published by Satoshi Mikawa.


BMC Genetics | 2011

Identification of a second gene associated with variation in vertebral number in domestic pigs

Satoshi Mikawa; Shuji Sato; Masahiro Nii; Takeya Morozumi; Gou Yoshioka; Noriaki Imaeda; Tsuneko Yamaguchi; Takeshi Hayashi; Takashi Awata

BackgroundThe number of vertebrae in pigs varies and is associated with body size. Wild boars have 19 vertebrae, but European commercial breeds for pork production have 20 to 23 vertebrae. We previously identified two quantitative trait loci (QTLs) for number of vertebrae on Sus scrofa chromosomes (SSC) 1 and 7, and reported that an orphan nuclear receptor, NR6A1, was located at the QTL on SSC1. At the NR6A1 locus, wild boars and Asian local breed pigs had the wild-type allele and European commercial-breed pigs had an allele associated with increased numbers of vertebrae (number-increase allele).ResultsHere, we performed a map-based study to define the other QTL, on SSC7, for which we detected genetic diversity in European commercial breeds. Haplotype analysis with microsatellite markers revealed a 41-kb conserved region within all the number-increase alleles in the present study. We also developed single nucleotide polymorphisms (SNPs) in the 450-kb region around the QTL and used them for a linkage disequilibrium analysis and an association study in 199 independent animals. Three haplotype blocks were detected, and SNPs in the 41-kb region presented the highest associations with the number of vertebrae. This region encodes an uncharacterized hypothetical protein that is not a member of any other known gene family. Orthologs appear to exist not only in mammals but also birds and fish. This gene, which we have named vertnin (VRTN) is a candidate for the gene associated with variation in vertebral number. In pigs, the number-increase allele was expressed more abundantly than the wild-type allele in embryos. Among candidate polymorphisms, there is an insertion of a SINE element (PRE1) into the intron of the Q allele as well as the SNPs in the promoter region.ConclusionsGenetic diversity of VRTN is the suspected cause of the heterogeneity of the number of vertebrae in commercial-breed pigs, so the polymorphism information should be directly useful for assessing the genetic ability of individual animals. The number-increase allele of swine VRTN was suggested to add an additional thoracic segment to the animal. Functional analysis of VRTN may provide novel findings in the areas of developmental biology.


Animal Science Journal | 2013

Association of swine vertnin (VRTN) gene with production traits in Duroc pigs improved using a closed nucleus breeding system

Kensuke Hirose; Satoshi Mikawa; Naohiko Okumura; Go Noguchi; Kazuo Fukawa; Naoe Kanaya; Ayumi Mikawa; Aisaku Arakawa; Tetsuya Ito; Yoichi Hayashi; Fumio Tachibana; Takashi Awata

Vertnin (VRTN) is involved in the variation of vertebral number in pigs and it is located on Sus scrofa chromosome 7. Vertebral number is related to body size in pigs, and many reports have suggested presence of an association between body length (BL) and meat production traits. Therefore, we analyzed the relationship between the VRTN genotype and the production and body composition traits in purebred Duroc pigs. Intramuscular fat content (IMF) in the Longissimus muscle was significantly associated with the VRTN genotype. The mean IMF of individuals with the wild-type genotype (Wt/Wt) (5.22%) was greater than that of individuals with the Wt/Q (4.99%) and Q/Q genotypes (4.79%). In addition, a best linear unbiased predictor of multiple traits animal model showed that the Wt allele had a positive effect on the IMF breeding value. No associations were observed between the VRTN genotype and other production traits. The VRTN genotype was related to BL. The Q/Q genotype individuals (100.0 cm) were longer than individuals with the Wt/Q (99.5 cm) and Wt/Wt genotypes (98.9 cm). These results suggest that in addition to the maintenance of an appropriate backfat thickness value, VRTN has the potential to act as a genetic marker of IMF.


Animal Science Journal | 2014

Evaluation of effects of multiple candidate genes (LEP, LEPR, MC4R, PIK3C3, and VRTN) on production traits in Duroc pigs

Kensuke Hirose; Tetsuya Ito; Kazuo Fukawa; Aisaku Arakawa; Satoshi Mikawa; Yoichi Hayashi

We evaluated multiple effects of genetic variations of five candidate loci (LEP, LEPR, MC4R, PIK3C3 and VRTN) on four production traits (average daily weight gain (ADG); backfat thickness (BFT); loin eye muscle area (EMA); and intramuscular fat content (IMF)) in a closed nucleus herd of pure Duroc pigs. Polymorphisms in LEPR, MC4R and PIK3C3 had significant single gene effects on ADG and BFT. The additive genetic variance in ADG and BFT (16.99% and 22.51%, respectively) was explained by genetic effects of these three loci. No correlations were observed between the LEP genotype and production traits in this study. Although we detected marginally epistatic interactions between LEPR and PIK3C3 on the eye muscle area, there were no significant epistatic effects on any traits among all loci pairs. These results suggest that LEPR, MC4R, PIK3C3 and VRTN may independently influence growth rate and fat deposition. Furthermore, the statistical models for predicting the breeding values of each trait had the lowest Akaikes information criterion values when considering the effect of the MC4R, LEPR, PIK3C3 and VRTN genotype simultaneously. These results suggest that LEPR, MC4R, PIK3C3 and VRTN are useful markers for accurately predicting breeding values in Duroc pigs.


Molecular Biology Reports | 2014

MicroRNA-33b downregulates the differentiation and development of porcine preadipocytes.

Masaaki Taniguchi; Ikuyo Nakajima; Koichi Chikuni; Misaki Kojima; Takashi Awata; Satoshi Mikawa

Sterol regulatory element binding transcription factor (SREBF) is a key transcription regulator for lipid homeostasis. MicroRNA-33b (miR-33b) is embedded in intron 16 of porcine SREBF1 and is conserved among most mammals. Here, we investigated the effect of miR-33b on adipocyte differentiation and development in porcine subcutaneous pre-adipocytes (PSPA). PSPA were transiently transfected with miR-33b, and adipose differentiation was then induced. Delayed adipose differentiation and decreased lipid accumulation were observed in miR-33b-transfected PSPA. Computational predictions suggested that miR-33b may target early B cell factor 1 (EBF1), an adipocyte activator of lipogenesis regulators such as CCAAT-enhancer binding protein alpha (C/EBPα) and peroxisome proliferator-activated receptor gamma (PPARγ). Both gene and protein expression of EBF1 were downregulated in miR-33b-transfected PSPA, followed by considerable decreases in the expression of C/EBPα and PPARγ and their downstream lipogenic genes. However, miR-33b transfection did not markedly affect mRNA and protein expression of SREBF1. We also investigated differences in the expression of miR-33b and lipogenic genes in subcutaneous fat tissues between 5-month-old crossbred gilts derived from Landrace (lean-type) and Meishan (fatty-type) boars. Landrace-derived crossbred gilts expressed more miR-33b and less lipogenic genes than did gilts derived from Meishan. Our results suggest that miR-33b affected the differentiation and development of PSPA by attenuating the lipogenic gene expression cascade through EBF1 to C/EBPα and PPARγ. The differential expression of miR-33b observed in crossbred gilts may in part account for differences in lipogenic gene expression and the fat:lean ratio between pig breeds.


Animal Genetics | 2012

A genome-wide scan for quantitative trait loci affecting respiratory disease and immune capacity in Landrace pigs.

Toshihiro Okamura; W. Onodera; T. Tayama; Hiroshi Kadowaki; C. Kojima-Shibata; Eisaku Suzuki; Yoshinobu Uemoto; Satoshi Mikawa; Takeshi Hayashi; Takashi Awata; N. Fujishima-Kanaya; A. Mikawa; Hirohide Uenishi; K. Suzuki

Respiratory disease is the most important health concern for the swine industry. Genetic improvement for disease resistance is challenging because of the difficulty in obtaining good phenotypes related with disease resistance; however, identification of genes or markers associated with disease resistance can help in the genetic improvement of pig health. The purpose of our study was to investigate whether quantitative trait loci (QTL) associated with disease resistance were segregated in a purebred population of Landrace pigs that had been selected for meat production traits and mycoplasmal pneumonia of swine (MPS) scores over five generations. We analysed 1395 pigs from the base to the fifth generation of this population. Two respiratory disease traits [MPS scores and atrophic rhinitis (AR) scores] and 11 immune-capacity traits were measured in 630-1332 animals at 7 weeks of age and when the animals body weight reached 105 kg. Each of the pigs, except sires in the base population, was genotyped using 109 microsatellite markers, and then, QTL analysis of the full-sib family population with a multi-generational pedigree structure was performed. Variance component analysis was used to detect QTL associated with MPS or AR scores, and the logarithm of odds (LOD) score and genotypic heritability of the QTL were estimated. Five significant (LOD > 2.51) and 18 suggestive (LOD > 1.35) QTL for respiratory disease traits and immune-capacity traits were detected. The significant QTL for Log-MPS score, located on S. scrofa chromosome 2, could explain 87% of the genetic variance of this score in this analysis. This is the first report of QTL associated with respiratory disease lesions.


Molecular Immunology | 2009

Molecular cloning and characterization of porcine Mx2 gene.

Takeya Morozumi; Tadasuke Naito; Pham Doan Lan; Emiko Nakajima; Tadayoshi Mitsuhashi; Satoshi Mikawa; Takeshi Hayashi; Takashi Awata; Hirohide Uenishi; Kyosuke Nagata; Tomomasa Watanabe; Noriyuki Hamasima

Mx, an interferon-inducible protein, is found in various vertebrates and confers resistance to several RNA viruses. At least two Mx proteins occur in vertebrates, and these proteins are key components of innate defense against viral infection. In mice and humans, the two Mx genes have different antiviral activities. Both Mx1 and Mx2 have also been detected in pigs, although only a partial sequence of porcine Mx2 has been reported, and there is no information on its antiviral activity. Here, we report the structure of the intact porcine Mx2 gene having an open reading frame of 2136 bp. We also determined the sequence of the genomic region containing the entire porcine Mx2 gene in addition to Mx1 gene. A weak constitutive expression of porcine Mx2 mRNA and endogenous Mx2 protein was observed in interferon-untreated cells. Porcine endogenous Mx2 protein showed nuclear localization. Furthermore, assays using NIH3T3 cells transfected with Mx genes showed that porcine Mx2 possessed antiviral activity against influenza, although this activity was lower than that of human MxA. This report is the first to describe the intact porcine Mx2 gene, which is a functional gene that may play a key role in the clearance of viruses in pigs.


Biochemical Genetics | 2005

Structure and Polymorphism Analysis of Transforming Growth Factor Beta Receptor 1 (TGFBR1) in Pigs

Shin-ichi Shimanuki; Ayumi Mikawa; Yuko Miyake; Noriyuki Hamasima; Satoshi Mikawa; Takashi Awata

Many quantitative trait loci (QTL) for growth and reproductive traits have been detected on the porcine chromosome region 1qter (SSC1qter), making it one of the most important genomic regions for pig breeding. SSC1q corresponds to human chromosome 9, on which lies transforming growth factor beta receptor 1 (TGFBR1). We cloned the porcine TGFBR1 cDNA and gene (as a candidate for QTL) and analyzed the gene structure and polymorphism. Porcine TGFBR1 consists of 9 exons and 8 introns. Intron 2 is alternatively spliced at the acceptor site, resulting in two kinds of mRNA, with putative open reading frames of 1500 and 1512 bp in length. The shorter one encodes 499 amino acid residues. The amino acid sequence has 96.2 and 97.2% sequence similarity to those of human and bovine TGFBR1, respectively. The sequence similarity between porcine and murine TGFBR1 is 95.6%. We detected three single-nucleotide substitutions in exons 1, 2, and 7. Those in exons 1 and 7 are nonsynonymous substitutions resulting in Pro8Ser and Ile413Val substitutions, respectively.


Animal Science Journal | 2015

Genomic structural analysis of porcine fatty acid desaturase cluster on chromosome 2

Masaaki Taniguchi; Aisaku Arakawa; Michiyo Motoyama; Ikuyo Nakajima; Masahiro Nii; Satoshi Mikawa

Fatty acid composition is an economically important trait in meat-producing livestock. To gain insight into the molecular genetics of fatty acid desaturase (FADS) genes in pigs, we investigated the genomic structure of the porcine FADS gene family on chromosome 2. We also examined the tissue distribution of FADS gene expression. The genomic structure of FADS family in mammals consists of three isoforms FADS1, FADS2 and FADS3. However, porcine FADS cluster in the latest pig genome assembly (Sscrofa 10.2) containing some gaps is distinct from that in other mammals. We therefore sought to determine the genomic structure, including the FADS cluster in a 200-kbp range by sequencing gap regions. The structure we obtained was similar to that in other mammals. We then investigated the porcine FADS1 transcription start site and identified a novel isoform named FADS1b. Phylogenetic analysis revealed that the three members of the FADS cluster were orthologous among mammals, whereas the various FADS1 isoforms identified in pigs, mice and cattle might be attributable to species-specific transcriptional regulation with alternative promoters. Porcine FADS1b and FADS3 isoforms were predominantly expressed in the inner layer of the subcutaneous adipose tissue. Additional analyses will reveal the effects of these functionally unknown isoforms on fatty acid composition in pig fat tissues.


Meat Science | 2010

Overexpression of NUDT7, a candidate quantitative trait locus for pork color, downregulates heme biosynthesis in L6 myoblasts

Masaaki Taniguchi; Takeshi Hayashi; Masahiro Nii; Tomomi Yamaguchi; Naoe Fujishima-Kanaya; Takashi Awata; Satoshi Mikawa

While testing a quantitative trait locus (QTL) for pork color in a cross population of pigs from the mating of Large White dams to a Japanese wild boar, our laboratory discovered a candidate gene (NUDT7) that might affect heme biosynthesis in porcine muscle. Therefore, this experiment was designed to test the effect of NUDT7 on heme biosynthesis in cultured myoblasts. Rat L6 myoblasts were transfected with a mammalian expression vector for pig NUDT7 immediately after the induction of cell differentiation, and samples were harvested at 2, 4, 6, and 8 days. Expression of exogenous NUDT7 mRNA was highest on day 4, when the heme content was substantially lower (P<0.01) than that of the control (14.2 vs. 63.9 pmol/10(5) cells). These results suggest that overexpression of pig NUDT7 may be associated with heme biosynthesis downregulation in skeletal muscle, which may partially explain differences in meat color among breeds of livestock.


Animal Science Journal | 2016

Variational bayesian method of estimating variance components

Aisaku Arakawa; Masaaki Taniguchi; Takeshi Hayashi; Satoshi Mikawa

We developed a Bayesian analysis approach by using a variational inference method, a so-called variational Bayesian method, to determine the posterior distributions of variance components. This variational Bayesian method and an alternative Bayesian method using Gibbs sampling were compared in estimating genetic and residual variance components from both simulated data and publically available real pig data. In the simulated data set, we observed strong bias toward overestimation of genetic variance for the variational Bayesian method in the case of low heritability and low population size, and less bias was detected with larger population sizes in both methods examined. The differences in the estimates of variance components between the variational Bayesian and the Gibbs sampling were not found in the real pig data. However, the posterior distributions of the variance components obtained with the variational Bayesian method had shorter tails than those obtained with the Gibbs sampling. Consequently, the posterior standard deviations of the genetic and residual variances of the variational Bayesian method were lower than those of the method using Gibbs sampling. The computing time required was much shorter with the variational Bayesian method than with the method using Gibbs sampling.

Collaboration


Dive into the Satoshi Mikawa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Takeshi Hayashi

National Agriculture and Food Research Organization

View shared research outputs
Top Co-Authors

Avatar

Hirohide Uenishi

National Agriculture and Food Research Organization

View shared research outputs
Top Co-Authors

Avatar

Aisaku Arakawa

National Agriculture and Food Research Organization

View shared research outputs
Top Co-Authors

Avatar

Masaaki Taniguchi

National Agriculture and Food Research Organization

View shared research outputs
Top Co-Authors

Avatar

Ikuyo Nakajima

National Agriculture and Food Research Organization

View shared research outputs
Top Co-Authors

Avatar

Naohiko Okumura

Obihiro University of Agriculture and Veterinary Medicine

View shared research outputs
Top Co-Authors

Avatar

Shuji Sato

Hisamitsu Pharmaceutical Co.

View shared research outputs
Top Co-Authors

Avatar

Tetsuya Ito

Tokyo University of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Toshimi Matsumoto

National Agriculture and Food Research Organization

View shared research outputs
Researchain Logo
Decentralizing Knowledge