Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Satoshi Sakami is active.

Publication


Featured researches published by Satoshi Sakami.


Bioorganic & Medicinal Chemistry Letters | 2008

(3R)-3-amino-4-(2,4,5-trifluorophenyl)-N-{4-[6-(2-methoxyethoxy)benzothiazol-2-yl]tetrahydropyran-4-yl}butanamide as a potent dipeptidyl peptidase IV inhibitor for the treatment of type 2 diabetes.

Aiko Nitta; Hideaki Fujii; Satoshi Sakami; Yutaka Nishimura; Tomofumi Ohyama; Mikiya Satoh; Junko Nakaki; Shiho Satoh; Chifumi Inada; Hideki Kozono; Hiroki Kumagai; Masahiro Shimamura; Tominaga Fukazawa; Hideki Kawai

Novel series of 3-amino-N-(4-aryl-1,1-dioxothian-4-yl)butanamides and 3-amino-N-(4-aryltetrahydropyran-4-yl)butanamides were synthesized and evaluated as dipeptidyl peptidase IV (DPP-IV) inhibitors. Derivatives incorporating the 6-substituted benzothiazole group showed highly potent DPP-IV inhibitory activity. Oral administration of (3R)-3-amino-4-(2,4,5-trifluorophenyl)-N-{4-[6-(2-methoxyethoxy)benzothiazol-2-yl]tetrahydropyran-4-yl}butanamide (12u) reduced blood glucose excursion in an oral glucose tolerance test.


Bioorganic & Medicinal Chemistry Letters | 2012

Novel series of 3-amino-N-(4-aryl-1,1-dioxothian-4-yl)butanamides as potent and selective dipeptidyl peptidase IV inhibitors.

Aiko Nitta; Hideaki Fujii; Satoshi Sakami; Mikiya Satoh; Junko Nakaki; Shiho Satoh; Hiroki Kumagai; Hideki Kawai

A series of novel 3-amino-N-(4-aryl-1,1-dioxothian-4-yl)butanamides were investigated as dipeptidyl peptidase IV (DPP-4) inhibitors. Introduction of a 4-phenylthiazol-2-yl group showed highly potent DPP-4 inhibitory activity. Among various derivatives, (3R)-3-amino-N-(4-(4-phenylthiazol-2-yl)-tetrahydro-2H-thiopyran-4-yl)-4-(2,4,5-trifluorophenyl)butanamide 1,1-dioxide (30) reduced blood glucose excursion in an oral glucose tolerance test by oral administration.


Journal of Pharmacology and Experimental Therapeutics | 2014

HIS-388, a Novel Orally Active and Long-Acting 11β-Hydroxysteroid Dehydrogenase Type 1 Inhibitor, Ameliorates Insulin Sensitivity and Glucose Intolerance in Diet-Induced Obesity and Nongenetic Type 2 Diabetic Murine Models

Seiji Okazaki; Takehiro Takahashi; Tomokatsu Iwamura; Junko Nakaki; Yumiko Sekiya; Mai Yagi; Hiroki Kumagai; Mikiya Sato; Satoshi Sakami; Aiko Nitta; Koji Kawai; Mie Kainoh

11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) is considered a potential therapeutic target in the treatment of type 2 diabetes mellitus. In this study, we investigated the pharmacological properties of HIS-388 (N-[(1R,2s,3S,5s,7s)-5-hydroxyadamantan-2-yl]-3-(pyridin-2-yl) isoxazole-4-carboxamide), a newly synthesized 11β-HSD1 inhibitor, using several mouse models. In cortisone pellet–implanted mice in which hypercortisolism and hyperinsulinemia occur, single administration of HIS-388 exhibited potent and prolonged suppression of plasma cortisol and lowered plasma insulin levels. These effects were more potent than those achieved using the same dose of other 11β-HSD1 inhibitors (carbenoxolone and compound 544 [3-[(1s,3s)-adamantan-1-yl]-6,7,8,9-tetrahydro-5H-[1,2,4]triazolo[4,3-a]azepine]), indicating that HIS-388 potently and continuously suppresses 11β-HSD1 enzyme activity in vivo. In diet-induced obese mice, HIS-388 significantly decreased fasting blood glucose, plasma insulin concentration, and homeostasis model assessment–insulin resistance score, and ameliorated insulin sensitivity. In addition, HIS-388 significantly reduced body weight and suppressed the elevation of blood glucose during the pyruvate tolerance test. In nongenetic type 2 diabetic mice with disease induced by a high-fat diet and low-dose streptozotocin, HIS-388 also significantly decreased postprandial blood glucose and plasma insulin levels and improved glucose intolerance. The effects of HIS-388 on glucose metabolism were indistinguishable from those of an insulin sensitizer, pioglitazone. Our results suggest that HIS-388 is a potent agent against type 2 diabetes. Moreover, amelioration of diabetic symptoms by HIS-388 was at least in part attributable to an antiobesity effect or improvement of hepatic insulin resistance. Therefore, potent and long-lasting inhibition of 11β-HSD1 enzyme activity may be an effective approach for the treatment of type 2 diabetes and obesity-associated disease.


Journal of Pharmacology and Experimental Therapeutics | 2014

HIS-388, a novel orally active and long-acting 11β-HSD1 inhibitor, ameliorates insulin sensitivity and glucose intolerance in diet-induced obesity and non-genetic type 2 diabetic murine models

Seiji Okazaki; Takehiro Takahashi; Tomokatsu Iwamura; Junko Nakaki; Yumiko Sekiya; Mai Yagi; Hiroki Kumagai; Mikiya Sato; Satoshi Sakami; Aiko Nitta; Koji Kawai; Mie Kainoh

11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) is considered a potential therapeutic target in the treatment of type 2 diabetes mellitus. In this study, we investigated the pharmacological properties of HIS-388 (N-[(1R,2s,3S,5s,7s)-5-hydroxyadamantan-2-yl]-3-(pyridin-2-yl) isoxazole-4-carboxamide), a newly synthesized 11β-HSD1 inhibitor, using several mouse models. In cortisone pellet–implanted mice in which hypercortisolism and hyperinsulinemia occur, single administration of HIS-388 exhibited potent and prolonged suppression of plasma cortisol and lowered plasma insulin levels. These effects were more potent than those achieved using the same dose of other 11β-HSD1 inhibitors (carbenoxolone and compound 544 [3-[(1s,3s)-adamantan-1-yl]-6,7,8,9-tetrahydro-5H-[1,2,4]triazolo[4,3-a]azepine]), indicating that HIS-388 potently and continuously suppresses 11β-HSD1 enzyme activity in vivo. In diet-induced obese mice, HIS-388 significantly decreased fasting blood glucose, plasma insulin concentration, and homeostasis model assessment–insulin resistance score, and ameliorated insulin sensitivity. In addition, HIS-388 significantly reduced body weight and suppressed the elevation of blood glucose during the pyruvate tolerance test. In nongenetic type 2 diabetic mice with disease induced by a high-fat diet and low-dose streptozotocin, HIS-388 also significantly decreased postprandial blood glucose and plasma insulin levels and improved glucose intolerance. The effects of HIS-388 on glucose metabolism were indistinguishable from those of an insulin sensitizer, pioglitazone. Our results suggest that HIS-388 is a potent agent against type 2 diabetes. Moreover, amelioration of diabetic symptoms by HIS-388 was at least in part attributable to an antiobesity effect or improvement of hepatic insulin resistance. Therefore, potent and long-lasting inhibition of 11β-HSD1 enzyme activity may be an effective approach for the treatment of type 2 diabetes and obesity-associated disease.


Bioorganic & Medicinal Chemistry Letters | 2013

Discovery of novel 7-membered cyclic amide derivatives that inhibit 11beta-hydroxysteroid dehydrogenase type 1

Shuji Udagawa; Satoshi Sakami; Takahiro Takemura; Mikiya Sato; Takahiro Arai; Aiko Nitta; Takumi Aoki; Koji Kawai; Tomokatsu Iwamura; Seiji Okazaki; Takehiro Takahashi; Mie Kaino

A series of novel 5-trans-hydroxyadamantan-2-yl-5,6,7,8-tetrahydropyrazolo[4,3-c]azepin-4(1H)-ones that inhibit 11beta-hydroxysteroid dehydrogenase type 1 are described. We discovered these 7-membered cyclic amide derivatives by introducing a distinctive linker through pharmacophore analysis of known ligands included in X-ray co-crystal structures. Further optimization using docking studies led to highly potent inhibitors 15b and 27, which furthermore showed the potent efficacy in in vivo studies.


Journal of Medicinal Chemistry | 2008

Structure-Antitussive Activity Relationships of Naltrindole Derivatives. Identification of Novel and Potent Antitussive Agents

Satoshi Sakami; Masayuki Maeda; Koji Kawai; Takumi Aoki; Kuniaki Kawamura; Hideaki Fujii; Ko Hasebe; Mayumi Nakajima; Takashi Endo; Shinya Ueno; Tsuyoshi Ito; Junzo Kamei; Hiroshi Nagase


Bioorganic & Medicinal Chemistry | 2008

Design and synthesis of a metabolically stable and potent antitussive agent, a novel δ opioid receptor antagonist, TRK-851

Satoshi Sakami; Koji Kawai; Masayuki Maeda; Takumi Aoki; Hideaki Fujii; Hiroshi Ohno; Tsuyoshi Ito; Akiyoshi Saitoh; Kaoru Nakao; Naoki Izumimoto; Hirotoshi Matsuura; Takashi Endo; Shinya Ueno; Kazuto Natsume; Hiroshi Nagase


Archive | 2006

Novel noncyclic amine carboxamide derivative and salt thereof

Hideaki Fujii; Yutaka Nishimura; Aiko Nitta; Satoshi Sakami; Junko Nakaki; Hideki Kozono


Archive | 2014

Method for producing butadiene

Daijiro Tsukamoto; Satoshi Sakami; Kenji Kawamura; Katsushige Yamada


Chemistry Letters | 2016

Production of Bio-based 1,3-Butadiene by Highly Selective Dehydration of 2,3-Butanediol over SiO2-supported Cesium Dihydrogen Phosphate Catalyst

Daijiro Tsukamoto; Satoshi Sakami; Masateru Ito; Katsushige Yamada; Tetsu Yonehara

Collaboration


Dive into the Satoshi Sakami's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Masateru Ito

Tokyo University of Science

View shared research outputs
Researchain Logo
Decentralizing Knowledge