Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Satoshi Sugimura is active.

Publication


Featured researches published by Satoshi Sugimura.


Journal of Biological Chemistry | 2015

Cumulin, an oocyte-secreted heterodimer of the transforming growth factor-β family, is a potent activator of granulosa cells and improves oocyte quality

David G. Mottershead; Satoshi Sugimura; Sara L. Al-Musawi; Jing-Jie Li; Dulama Richani; Melissa A. White; Georgia A. Martin; Andrew P. Trotta; Lesley J. Ritter; Junyan Shi; Thomas D. Mueller; Craig A. Harrison; Robert B. Gilchrist

Background: Cumulin is a newly identified heterodimeric member of the TGF-β family. Results: Mature cumulin potently stimulates granulosa cell signaling and function, whereas pro-cumulin promotes oocyte quality. Conclusion: Formation of cumulin and its potent actions are likely to be central to oocyte paracrine signaling and mammalian fecundity. Significance: The discovery of cumulin provides unique opportunities to improve female fertility in mammals. Growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15) are oocyte-specific growth factors with central roles in mammalian reproduction, regulating species-specific fecundity, ovarian follicular somatic cell differentiation, and oocyte quality. In the human, GDF9 is produced in a latent form, the mechanism of activation being an open question. Here, we produced a range of recombinant GDF9 and BMP15 variants, examined their in silico and physical interactions and their effects on ovarian granulosa cells (GC) and oocytes. We found that the potent synergistic actions of GDF9 and BMP15 on GC can be attributed to the formation of a heterodimer, which we have termed cumulin. Structural modeling of cumulin revealed a dimerization interface identical to homodimeric GDF9 and BMP15, indicating likely formation of a stable complex. This was confirmed by generation of recombinant heterodimeric complexes of pro/mature domains (pro-cumulin) and covalent mature domains (cumulin). Both pro-cumulin and cumulin exhibited highly potent bioactivity on GC, activating both SMAD2/3 and SMAD1/5/8 signaling pathways and promoting proliferation and expression of a set of genes associated with oocyte-regulated GC differentiation. Cumulin was more potent than pro-cumulin, pro-GDF9, pro-BMP15, or the two combined on GC. However, on cumulus-oocyte complexes, pro-cumulin was more effective than all other growth factors at notably improving oocyte quality as assessed by subsequent day 7 embryo development. Our results support a model of activation for human GDF9 dependent on cumulin formation through heterodimerization with BMP15. Oocyte-secreted cumulin is likely to be a central regulator of fertility in mono-ovular mammals.


PLOS ONE | 2012

Promising System for Selecting Healthy In Vitro –Fertilized Embryos in Cattle

Satoshi Sugimura; Tomonori Akai; Yutaka Hashiyada; T. Somfai; Yasushi Inaba; Muneyuki Hirayama; Tadayuki Yamanouchi; Hideo Matsuda; Shuji Kobayashi; Yoshio Aikawa; Masaki Ohtake; Eiji Kobayashi; Kazuyuki Konishi; Kei Imai

Conventionally, in vitro–fertilized (IVF) bovine embryos are morphologically evaluated at the time of embryo transfer to select those that are likely to establish a pregnancy. This method is, however, subjective and results in unreliable selection. Here we describe a novel selection system for IVF bovine blastocysts for transfer that traces the development of individual embryos with time-lapse cinematography in our developed microwell culture dish and analyzes embryonic metabolism. The system can noninvasively identify prognostic factors that reflect not only blastocyst qualities detected with histological, cytogenetic, and molecular analysis but also viability after transfer. By assessing a combination of identified prognostic factors—(i) timing of the first cleavage; (ii) number of blastomeres at the end of the first cleavage; (iii) presence or absence of multiple fragments at the end of the first cleavage; (iv) number of blastomeres at the onset of lag-phase, which results in temporary developmental arrest during the fourth or fifth cell cycle; and (v) oxygen consumption at the blastocyst stage—pregnancy success could be accurately predicted (78.9%). The conventional method or individual prognostic factors could not accurately predict pregnancy. No newborn calves showed neonatal overgrowth or death. Our results demonstrate that these five predictors and our system could provide objective and reliable selection of healthy IVF bovine embryos.


Biology of Reproduction | 2010

Time-Lapse Cinematography-Compatible Polystyrene-Based Microwell Culture System: A Novel Tool for Tracking the Development of Individual Bovine Embryos

Satoshi Sugimura; Tomonori Akai; T. Somfai; Muneyuki Hirayama; Yoshio Aikawa; Masaki Ohtake; Hideshi Hattori; Shuji Kobayashi; Yutaka Hashiyada; Kazuyuki Konishi; Kei Imai

We have developed a polystyrene-based well-of-the-well (WOW) system using injection molding to track individual embryos throughout culture using time-lapse cinematography (TLC). WOW culture of bovine embryos following in vitro fertilization was compared with conventional droplet culture (control). No differences between control- and WOW-cultured embryos were observed during development to the blastocyst stage. Morphological quality and inner cell mass (ICM) and trophectoderm (TE) cell numbers were not different between control- and WOW-derived blastocysts; however, apoptosis in both the ICM and TE cells was reduced in WOW culture (P < 0.01). Oxygen consumption in WOW-derived blastocysts was closer to physiological level than that of control-derived blastocysts. Moreover, WOW culture improved embryo viability, as indicated by increased pregnancy rates at Days 30 and 60 after embryo transfer (P < 0.05). TLC monitoring was performed to evaluate the cleavage pattern and the duration of the first cell cycle of embryos from oocytes collected by ovum pickup; correlations with success of pregnancy were determined. Logistic regression analysis indicated that the cleavage pattern correlated with success of pregnancy (P < 0.05), but cell cycle length did not. Higher pregnancy rates (66.7%) were observed for animals in which transferred blastocysts had undergone normal cleavage, identified by the presence of two blastomeres of the same size without fragmentation, than among those with abnormal cleavage (33.3%). These results suggest that our microwell culture system is a powerful tool for producing and selecting healthy embryos and for identifying viability biomarkers.


Molecular Human Reproduction | 2014

Amphiregulin co-operates with bone morphogenetic protein 15 to increase bovine oocyte developmental competence: effects on gap junction-mediated metabolite supply

Satoshi Sugimura; Lesley J. Ritter; Melanie L. Sutton-McDowall; David G. Mottershead; Jeremy G. Thompson; Robert B. Gilchrist

This study assessed the participation of amphiregulin (AREG) and bone morphogenetic protein 15 (BMP15) during maturation of bovine cumulus-oocyte complexes (COCs) on cumulus cell function and their impact on subsequent embryo development. AREG treatment of COCs enhanced blastocyst formation and quality only when in the presence of BMP15. Expression of hyaluronan synthase 2 was enhanced by follicle-stimulating hormone (FSH) but not by AREG, which was reflected in the level of cumulus expansion. Although both FSH and AREG stimulated glycolysis, AREG-treated COCs had higher glucose consumption, lactate production and ratio of lactate production to glucose uptake. Autofluorescence levels in oocytes, indicative of NAD(P)H and FAD(++), were increased with combined AREG and BMP15 treatment of COCs. In contrast, these treatments did not alter autofluorescence levels when cumulus cells were removed from oocytes, even in the presence of other COCs, suggesting that oocyte-cumulus gap-junctional communication (GJC) is required. FSH contributed to maintaining GJC for an extended period of time. Remarkably, BMP15 was equally effective at maintaining GJC even in the presence of AREG. Hence, AREG stimulation of COC glycolysis and BMP15 preservation of GJC may facilitate efficient transfer of metabolites from cumulus cells to the oocyte thereby enhancing oocyte developmental competence. These results have implications for improving in vitro oocyte maturation systems.


Theriogenology | 2009

Interspecies somatic cell nucleus transfer with porcine oocytes as recipients: A novel bioassay system for assessing the competence of canine somatic cells to develop into embryos

Satoshi Sugimura; Kaori Narita; Hideaki Yamashiro; Atsushi Sugawara; T. Shoji; Y. Terashita; Katsuhiko Nishimori; Tsutomu Konno; Muneyoshi Yoshida; Eimei Sato

Interspecies somatic cell nucleus transfer (iSCNT) could be a useful bioassay system for assessing the ability of mammalian somatic cells to develop into embryos. To examine this possibility, we performed canine iSCNT using porcine oocytes, allowed to mature in vitro, as recipients. Canine fibroblasts from the tail tips and dewclaws of a female poodle (Fp) and a male poodle (Mp) were used as donors. We demonstrated that the use of porcine oocytes induced blastocyst formation in the iSCNT embryos cultured in porcine zygote medium-3. In Fp and Mp, the rate of blastocyst formation from cleaved embryos (Fp: 6.3% vs. 22.4%; and Mp: 26.1% vs. 52.4%) and the number of cells at the blastocyst stage (Fp: 30.7 vs. 60.0; and Mp: 27.2 vs. 40.1) were higher in the embryos derived from dewclaw cells than in those derived from tail-tip cells (P<0.05). The use of donor cells of any type in later passages decreased the rate of blastocyst formation. Treatment with trichostatin-A did not improve the rate of blastocyst formation from cleaved dewclaw cell-derived embryos but did so in the embryos derived from the tail-tip cells of Fp. Only blastocysts derived from dewclaw cells of Mp developed outgrowths. However, outgrowth formation was retrieved in the embryos derived from dewclaw cells of Fp by aggregation at the 4-cell stage. We inferred that iSCNT performed using porcine oocytes as recipients could represent a novel bioassay system for evaluating the developmental competence of canine somatic cells.


Cloning and Stem Cells | 2008

Production of Viable Cloned Miniature Pig Embryos Using Oocytes Derived from Domestic Pig Ovaries

Takuya Wakai; Satoshi Sugimura; Ken Ichi Yamanaka; Manabu Kawahara; Hiroshi Sasada; Hozumi Tanaka; Asako Ando; Eiji Kobayashi; Eimei Sato

For production of viable somatic cell nuclear transferred (SCNT) miniature pig embryos, in vitro condition for controlling the quality of recipient oocytes derived from domestic pig ovaries should be evaluated. In the present study, to get information on optimal in vitro maturation (IVM) condition of oocytes, we investigated the effect of IVM duration of recipient oocytes on subsequent development of SCNT miniature pig embryos, the maturation-promoting factor (MPF) activity in recipient oocytes before and after SCNT, and the occurrence of premature chromosome condensation (PCC) and spindle morphologies of donor nuclei following SCNT. The optimal window of the IVM period in terms of in vitro developmental ability of SCNT embryos was determined to be 36-40 h after the start of IVM. The use of recipient oocytes matured for 36 and 40 h resulted in a high level of MPF activity before and after SCNT, and increased the occurrence of PCC in transferred nuclei compared to the use of oocytes matured for 44 and 52 h. The proportion of abnormal spindle-like structures increased as the IVM period was prolonged. In addition, SCNT embryos constructed from recipient cytoplasts obtained after 40 h of maturation by using fetal fibroblasts of miniature pigs were transferred to surrogate miniature pigs, and developed to full term. These results suggest that recipient oocytes matured for 36 h and 40 h effectively induce PCC with a normal cytoskeletal structure because of a high level of MPF activity; furthermore, the 40-h IVM period improves in vitro development of SCNT embryos to the blastocyst stage, resulting in the production of viable cloned miniature pigs.


Human Reproduction | 2016

Extending prematuration with cAMP modulators enhances the cumulus contribution to oocyte antioxidant defence and oocyte quality via gap junctions

H.J. Li; Melanie L. Sutton-McDowall; X. Wang; Satoshi Sugimura; Jeremy G. Thompson; Robert B. Gilchrist

STUDY QUESTION Can bovine oocyte antioxidant defence and oocyte quality be improved by extending the duration of pre-in vitro maturation (IVM) with cyclic adenosine mono-phosphate (cAMP) modulators? SUMMARY ANSWER Lengthening the duration of cAMP-modulated pre-IVM elevates intra-oocyte reduced glutathione (GSH) content and reduces hydrogen peroxide (H2O2) via increased cumulus cell-oocyte gap-junctional communication (GJC), associated with an improvement in subsequent embryo development and quality. WHAT IS KNOWN ALREADY Oocytes are susceptible to oxidative stress and the oocytes most important antioxidant glutathione is supplied, at least in part, by cumulus cells. A temporary inhibition of spontaneous meiotic resumption in oocytes can be achieved by preventing a fall in cAMP, and cyclic AMP-modulated pre-IVM maintains cumulus-oocyte GJC and improves subsequent embryo development. STUDY DESIGN, SIZE, DURATION This study consisted of a series of 10 experiments using bovine oocytes in vitro, each with multiple replicates. A range of pre-IVM durations were examined as the key study treatments which were compared with a control. The study was designed to examine if one of the oocytes major antioxidant defences can be enhanced by pre-IVM with cAMP modulators, and to examine the contribution of cumulus-oocyte GJC on these processes. PARTICIPANTS/MATERIALS, SETTING, METHODS Immature bovine cumulus-oocyte complexes were treated in vitro without (control) or with the cAMP modulators; 100 µM forskolin (FSK) and 500 µM 3-isobutyl-1-methyxanthine (IBMX), for 0, 2, 4 or 6 h (pre-IVM phase) prior to IVM. Oocyte developmental competence was assessed by embryo development and quality post-IVM/IVF. Cumulus-oocyte GJC, intra-oocyte GSH and H2O2 were quantified at various time points during pre-IVM and IVM, in the presence and the absence of functional inhibitors: carbenoxolone (CBX) to block GJC and buthionine sulfoximide (BSO) to inhibit glutathione synthesis. MAIN RESULTS AND THE ROLE OF CHANCE Pre-IVM with FSK + IBMX increased subsequent blastocyst formation rate and quality compared with standard IVM (P < 0.05), regardless of pre-IVM duration. The final blastocyst yields (proportion of blastocysts/immature oocyte) were 26.3% for the control, compared with 39.2, 35.2 and 34.2%, for the 2, 4 and 6 h pre-IVM FSK + IBMX treatments, respectively. In contrast to standard IVM (control), pre-IVM with cAMP modulators maintained open gap junctions between cumulus cells and oocytes for the duration (6 h) of pre-IVM examined, and persisted for a further 8 h in the IVM phase. Cyclic AMP-modulated pre-IVM increased intra-oocyte GSH levels at the completion of both pre-IVM and IVM, in a pre-IVM duration-dependent manner (P < 0.05), which was ablated when GJC was blocked using CBX (P < 0.05). By 4 h of pre-IVM treatment with cAMP modulators, oocyte H2O2 levels were reduced compared the control (P < 0.05), although this beneficial effect was lost when oocytes were co-treated with BSO. Inhibiting glutathione synthesis with BSO during pre-IVM ablated any positive benefits of cAMP-mediated pre-IVM on oocyte developmental competence (P < 0.01). LIMITATIONS, REASONS FOR CAUTION It is unclear if the improvement in oocyte antioxidant defence and developmental competence reported here is due to direct transfer of total and/or reduced glutathione from cumulus cells to the oocyte via gap junctions, or whether a GSH synthesis signal and/or amino acid substrates are supplied to the oocyte via gap junctions. Embryo transfer experiments are required to determine if the cAMP-mediated improvement in blastocyst rates leads to improved live birth rates. WIDER IMPLICATIONS OF THE FINDINGS IVM offers significant benefits to infertile and cancer patients and has the potential to significantly alter ART practice, if IVM efficiency in embryo production could be improved closer to that of conventional IVF (using ovarian hyperstimulation). Pre-IVM with cAMP modulators is a simple and reliable means to improve IVM outcomes. STUDY FUNDING/COMPETING INTERESTS This work was supported by grants and fellowships from the National Health and Medical Research Council of Australia (1007551, 627007, 1008137, 1023210) and by scholarships from the Chinese Scholarship Council (CSC) awarded to H.J.L. and the Japanese Society for the Promotion of Science Postdoctoral Fellowship for Research Abroad awarded to S.S. The Fluoview FV10i confocal microscope was purchased as part of the Sensing Technologies for Advanced Reproductive Research (STARR) facility, funded by the South Australian Premiers Science and Research Fund. We acknowledge partial support from the Australian Research Council Centre of Excellence for Nanoscale BioPhotonics (CE140100003). We declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.


Reproduction | 2016

Oocyte maturation and quality: role of cyclic nucleotides

Robert B. Gilchrist; Alberto M. Luciano; Dulama Richani; Hai-tao Zeng; X Wang; M. De Vos; Satoshi Sugimura; Johan Smitz; F. J. Richard; Jeremy G. Thompson

The cyclic nucleotides, cAMP and cGMP, are the key molecules controlling mammalian oocyte meiosis. Their roles in oocyte biology have been at the forefront of oocyte research for decades, and many of the long-standing controversies in relation to the regulation of oocyte meiotic maturation are now resolved. It is now clear that the follicle prevents meiotic resumption through the actions of natriuretic peptides and cGMP - inhibiting the hydrolysis of intra-oocyte cAMP - and that the pre-ovulatory gonadotrophin surge reverses these processes. The gonadotrophin surge also leads to a transient spike in cAMP in the somatic compartment of the follicle. Research over the past two decades has conclusively demonstrated that this surge in cAMP is important for the subsequent developmental capacity of the oocyte. This is important, as oocyte in vitro maturation (IVM) systems practised clinically do not recapitulate this cAMP surge in vitro, possibly accounting for the lower efficiency of IVM compared with clinical IVF. This review particularly focuses on this latter aspect - the role of cAMP/cGMP in the regulation of oocyte quality. We conclude that clinical practice of IVM should reflect this new understanding of the role of cyclic nucleotides, thereby creating a new generation of ART and fertility treatment options.


Endocrinology | 2015

Oocyte Induction of EGF Responsiveness in Somatic Cells Is Associated With the Acquisition of Porcine Oocyte Developmental Competence

Lesley J. Ritter; Satoshi Sugimura; Robert B. Gilchrist

Oocytes progressively acquire the competence to support embryo development as oogenesis proceeds with ovarian folliculogenesis. The objectives of this study were to investigate oocyte-secreted factor (OSF) participation in the development of somatic cell epidermal growth factor (EGF) responsiveness associated with oocyte developmental competence. A well-established porcine model was employed using oocytes from small (<4 mm) vs medium sized (>4 mm) antral follicles, representing low vs moderate developmental competence, respectively. Cumulus-oocyte complexes (COCs) were treated in vitro with inducers of oocyte maturation, and cumulus cell functions and oocyte developmental competence were assessed. COCs from small follicles responded to FSH but, unlike COCs from larger follicles, were incapable of responding to EGF family growth factors known to mediate oocyte maturation in vivo, exhibiting perturbed cumulus expansion and expression of associated transcripts (HAS2 and TNFAIP6). Low and moderate competence COCs expressed equivalent levels of EGF receptor (EGFR) mRNA; however, the former had less total EGFR protein leading to failed activation of phospho-EGFR and phospho-ERK1/2, despite equivalent total ERK1/2 protein levels. Native OSFs from moderate, but not from low, competence oocytes established EGF responsiveness in low competence COCs. Four candidate recombinant OSFs failed to mimic the actions of native OSFs in regulating cumulus expansion. Treatment with OSFs and EGF enhanced oocyte competence but only of the low competence COCs. These data suggest that developmental acquisition by the oocyte of capacity to regulate EGF responsiveness in the oocytes somatic cells is a major milestone in the oocytes developmental program and contributes to coordinated oocyte and somatic cell development.


Reproduction in Domestic Animals | 2011

Improving the Quality of Miniature Pig Somatic Cell Nuclear Transfer Blastocysts: Aggregation of SCNT Embryos at the Four‐cell Stage

Yukari Terashita; Satoshi Sugimura; Y Kudo; R Amano; Yuuki Hiradate; Eimei Sato

Miniature pigs share many similar characteristics such as anatomy, physiology and body size with humans and are expected to become important animal models for therapeutic cloning using embryonic stem cells (ESCs) derived by somatic cell nuclear transfer (SCNT). In the present study, we observed that miniature pig SCNT blastocysts possessed a lower total number of nuclei and a lower percentage of POU5F1-positive cells than those possessed by in vitro fertilized (IVF) blastocysts. To overcome these problems, we evaluated the applicability of aggregating miniature pig SCNT embryos at the four-cell stage. We showed that (i) aggregation of two or three miniature pig SCNT embryos at the four-cell stage improves the total number of nuclei and the percentage of POU5F1-positive cells in blastocysts, and (ii) IVF blastocysts with low cell numbers induced by the removal of two blastomeres at the four-cell stage did not exhibit a decrease in the percentage of POU5F1-positive cells. These results suggest that the aggregation of miniature pig SCNT embryos at the four-cell stage can be a useful technique for improving the quality of miniature pig SCNT blastocysts and indicating that improvement in the percentage of POU5F1-positive cells in aggregated SCNT embryos is not simply the consequence of increased cell numbers.

Collaboration


Dive into the Satoshi Sugimura's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kei Imai

Rakuno Gakuen University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert B. Gilchrist

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

T. Somfai

National Agriculture and Food Research Organization

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Atsushi Sugawara

Tokyo University of Agriculture and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge