Satoshi Ueha
University of Tokyo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Satoshi Ueha.
Nature | 2013
Koji Atarashi; Takeshi Tanoue; Kenshiro Oshima; Wataru Suda; Yuji Nagano; Hiroyoshi Nishikawa; Shinji Fukuda; Takuro Saito; Seiko Narushima; Koji Hase; Sangwan Kim; Joëlle V. Fritz; Paul Wilmes; Satoshi Ueha; Kouji Matsushima; Hiroshi Ohno; Bernat Olle; Shimon Sakaguchi; Tadatsugu Taniguchi; Hidetoshi Morita; Masahira Hattori; Kenya Honda
Manipulation of the gut microbiota holds great promise for the treatment of inflammatory and allergic diseases. Although numerous probiotic microorganisms have been identified, there remains a compelling need to discover organisms that elicit more robust therapeutic responses, are compatible with the host, and can affect a specific arm of the host immune system in a well-controlled, physiological manner. Here we use a rational approach to isolate CD4+FOXP3+ regulatory T (Treg)-cell-inducing bacterial strains from the human indigenous microbiota. Starting with a healthy human faecal sample, a sequence of selection steps was applied to obtain mice colonized with human microbiota enriched in Treg-cell-inducing species. From these mice, we isolated and selected 17 strains of bacteria on the basis of their high potency in enhancing Treg cell abundance and inducing important anti-inflammatory molecules—including interleukin-10 (IL-) and inducible T-cell co-stimulator (ICOS)—in Treg cells upon inoculation into germ-free mice. Genome sequencing revealed that the 17 strains fall within clusters IV, XIVa and XVIII of Clostridia, which lack prominent toxins and virulence factors. The 17 strains act as a community to provide bacterial antigens and a TGF-β-rich environment to help expansion and differentiation of Treg cells. Oral administration of the combination of 17 strains to adult mice attenuated disease in models of colitis and allergic diarrhoea. Use of the isolated strains may allow for tailored therapeutic manipulation of human immune disorders.
Blood | 2008
Yasushi Sawanobori; Satoshi Ueha; Makoto Kurachi; Takeshi Shimaoka; James E. Talmadge; Jun Abe; Yusuke Shono; Masahiro Kitabatake; Kazuhiro Kakimi; Naofumi Mukaida; Kouji Matsushima
Tumor growth is associated with aberrant myelopoiesis, including the accumulation of CD11b(+)Gr-1(+) myeloid-derived suppressor cells (MDSCs) that have the potential to promote tumor growth. However, the identity, growth, and migration of tumor-associated MDSCs remain undefined. We demonstrate herein that MDSCs at tumor site were composed primarily of bone marrow-derived CD11b(+)Gr-1(hi)Ly-6C(int) neutrophils and CD11b(+)Gr-1(int/dull)Ly-6C(hi) macrophages. Unexpectedly, in vivo bromodeoxyuridine (BrdU) labeling and parabiosis experiments revealed that tumor-infiltrating macrophages were replenished more rapidly than neutrophils. CCR2 deficiency caused striking conversion of infiltrating cellular dominance from macrophages to neutrophils in the tumor with the excessive production of CXCR2 ligands and granulocyte-colony stimulating factor in the tumor without affecting tumor growth. Overall, our data established the identity and dynamics of MDSCs in a tumor-bearing host mediated by chemokines and elucidated unexpected effects of the paucity of macrophages on tumor development.
Proceedings of the National Academy of Sciences of the United States of America | 2006
Norihiko Sakai; Takashi Wada; Hitoshi Yokoyama; Martin Lipp; Satoshi Ueha; Kouji Matsushima; Shuichi Kaneko
Fibrocytes are a distinct population of bloodborne cells that share markers of leukocytes as well as mesenchymal cells. We hypothesized that CCR7-positive fibrocytes migrate into the kidney in response to secondary lymphoid tissue chemokine (SLC/CCL21) and contribute to renal fibrosis. To investigate this hypothesis, renal fibrosis was induced by unilateral ureteral obstruction in mice. A considerable number of fibrocytes dual-positive for CD45 and type I collagen (ColI) or CD34 and ColI infiltrated the interstitium, reaching a peak on day 7. Most fibrocytes were positive for CCR7, and CCL21/CCR7 blockade reduced the number of infiltrating fibrocytes. CCL21 and MECA79 dual-positive vessels were also detected in the interstitium. The blockade of CCL21/CCR7 signaling by anti-CCL21 antibodies reduced renal fibrosis, which was confirmed by a decrease in fibrosis in CCR7-null mice with concomitant reduction in renal transcripts of pro α1 chain of ColI and TGF-β1. The number of F4/80-positive macrophages decreased along with renal transcripts of monocyte chemoattractant protein 1 (MCP-1/CCL2) after the blockade of CCL21/CCR7 signaling. These findings suggest that CCR7-positive fibrocytes infiltrate the kidney via CCL21-positive vessels, thereby contributing to the pathogenesis of renal fibrosis. Thus, the CCL21/CCR7 signaling of fibrocytes may provide therapeutic targets for combating renal fibrosis.
European Journal of Immunology | 2006
Ana Claudia Zenclussen; Katrin Gerlof; Maria Laura Zenclussen; Stefanie Ritschel; Annarosa Zambon Bertoja; Stefan Fest; Shigeto Hontsu; Satoshi Ueha; Kouji Matsushima; Joachim Leber; Hans-Dieter Volk
The mechanisms underlying immune tolerance during pregnancy are poorly understood. In this regard, Treg seem to play an important role in mediating maternal tolerance to the fetus. We proposed a crucial role of T regulatory cells (Treg) in avoiding immunological rejection of the fetus after observing diminished number and function of Treg in abortion‐prone mice. We further confirmed the protective role of Treg during pregnancy by transferring pregnancy‐induced Treg into abortion‐prone mice, which prevented rejection. Here, we analyzed the mechanisms involved in Treg‐mediated protection. As expected, Treg therapy prevented abortion, while expanding the peripheral and thymic Treg population. Surprisingly, the decidual levels of the Th1 cytokines IFN‐γ and TNF‐α were not diminished after therapy. Interestingly, the mRNA levels of leukemia inhibitory factor, TGF‐β and heme oxygenase‐1 at the fetal‐maternal interface were dramatically up‐regulated after Treg transfer, while the levels of indolamine 2,3‐dioxygenase remained unchanged. Our data suggest that Treg treatment can not prevent T cell infiltration or high Th1 levels but is able to create a privileged tolerant microenvironment at the fetal‐maternal interface, further shedding light onto the molecular mechanisms involved in pregnancy tolerance.
Nature Immunology | 2012
Keisuke Nagao; Tetsuro Kobayashi; Kazuyo Moro; Manabu Ohyama; Takeya Adachi; Daniela Y. Kitashima; Satoshi Ueha; Keisuke Horiuchi; Hideaki Tanizaki; Kenji Kabashima; Akiharu Kubo; Young Hun Cho; Bjarn E. Clausen; Kouji Matsushima; Makoto Suematsu; Glaucia C. Furtado; Sergio A. Lira; Joshua M. Farber; Mark C. Udey; Masayuki Amagai
Langerhans cells (LCs) are epidermal dendritic cells with incompletely understood origins that associate with hair follicles for unknown reasons. Here we show that in response to external stress, mouse hair follicles recruited Gr-1hi monocyte-derived precursors of LCs whose epidermal entry was dependent on the chemokine receptors CCR2 and CCR6, whereas the chemokine receptor CCR8 inhibited the recruitment of LCs. Distinct hair-follicle regions had differences in their expression of ligands for CCR2 and CCR6. The isthmus expressed the chemokine CCL2; the infundibulum expressed the chemokine CCL20; and keratinocytes in the bulge produced the chemokine CCL8, which is the ligand for CCR8. Thus, distinct hair-follicle keratinocyte subpopulations promoted or inhibited repopulation with LCs via differences in chemokine production, a feature also noted in humans. Pre-LCs failed to enter hairless skin in mice or humans, which establishes hair follicles as portals for LCs.
Blood | 2010
Yusuke Shono; Satoshi Ueha; Yong Wang; Jun Abe; Makoto Kurachi; Yoshihiro Matsuno; Tatsuki Sugiyama; Takashi Nagasawa; Masahiro Imamura; Kouji Matsushima
Disrupted hematopoiesis and delayed immune reconstitution are life-threatening complications of allogeneic hematopoietic stem cell transplantation (allo-HSCT). Although graft-versus-host disease (GVHD) is a major risk factor for the bone marrow (BM) insufficiency, how GVHD impairs BM hematopoiesis has been largely unknown. We hypothesized that BM stromal niche could be a target of GVHD. In major histocompatibility complex (MHC)-mismatched murine models of GVHD, we have demonstrated the early destruction of osteoblasts that especially affected B-cell lineages. The defective B lymphopoiesis was due to the impaired ability of BM stroma and osteoblasts to support the hematopoiesis, as evidenced by the failure of GVHD-affected BM to reconstitute the hematopoietic cells. The administration of anti-CD4 monoclonal antibody (mAb) ameliorated these effects and improved B lymphopoiesis while preserving graft-versus-tumor effects. Genetic ablation of Fas-Fas ligand signaling also partially restored B lymphopoiesis. Our present study provided evidence of BM GVHD, with the identification of osteoblasts as the main target for GVHD in BM. Moreover, our data showed the potential for mAb therapies to enhance immune reconstitution in vivo for patients undergoing allo-HSCT.
Journal of Experimental Medicine | 2011
Makoto Kurachi; Junko Kurachi; Fumiko Suenaga; Tatsuya Tsukui; Jun Abe; Satoshi Ueha; Michio Tomura; Kei Sugihara; Shiki Takamura; Kazuhiro Kakimi; Kouji Matsushima
CXCR3 regulates CD8+ T cell recruitment to sites of inflammation, thus dictating CD8+ T cell contraction and subsequent effector/memory cell fate.
Frontiers in Immunology | 2012
Satoshi Ueha; Francis H. W. Shand; Kouji Matsushima
Organ fibrosis is a pathological condition associated with chronic inflammatory diseases. In fibrosis, excessive deposition of extracellular matrix (ECM) severely impairs tissue architecture and function, eventually resulting in organ failure. This process is mediated primarily by the induction of myofibroblasts, which produce large amounts of collagen I, the main component of the ECM. Accordingly, the origin, developmental pathways, and mechanisms of myofibroblast regulation are attracting increasing attention as potential therapeutic targets. The fibrotic cascade, from initial epithelial damage to eventual myofibroblast induction, is mediated by complex biological processes such as macrophage infiltration, a shift from Th1 to Th2 phenotype, and by inflammatory mediators such as transforming growth factor-β. Here, we review the current understanding of the cellular and molecular mechanisms underlying organ fibrosis.
Biochimica et Biophysica Acta | 2003
Takeshi Shimosato; Haruki Kitazawa; Shinichiro Katoh; Yoshihisa Tomioka; Risuke Karima; Satoshi Ueha; Yasushi Kawai; Takanori Hishinuma; Kouji Matsushima; Tadao Saito
Complementary DNA (cDNA) encoding swine Toll-like receptor 9 (sTLR9) was isolated from Peyers patches (Pps) of gut-associated lymphoid tissue (GALT). The complete open reading frame (ORF) of sTLR9 contains 3093 bp coding deduced 1030 amino acid residues. The amino acid sequence of sTLR9 was characterized by a signal peptide followed by multiple leucine-rich repeats, a transmembrane sequence and a cytoplasmic domain homologous to that of the human interleukin-1 receptor (TIR). The sTLR9 showed a higher amino acid identity with humans (81.8%) and felis catus (86.7%) than mice (74.9%). The HEK293T cells transfected with pCXN2.1-FLAG DNA containing the sTLR9 cDNA were expressed sTLR9 as a membrane-bound molecules, which were reactive with anti-sTLR9 rabbit polyclonal antibody. Moreover, the transfectant was responsible for the CpG oligo DNA. sTLR9 was preferentially expressed in Pps and mesenteric lymph nodes (MLNs), and its degree was approximately three times higher than a spleen but weak in the other tissues by the real-time quantitative PCR analyses. The strong expression of sTLR9 in Pps and MLNs and its recognizing CpG DNA for human cell stimulant are shown first in this study, which may help in understanding the intestinal immune system mediated by a bacterial DNA through TLR9.
International Immunopharmacology | 2011
Satoshi Ueha; Francis H. W. Shand; Kouji Matsushima
Tumor growth is often associated with the aberrant systemic accumulation of myeloid-derived suppressor cells (MDSCs), which are a heterogenous population of cells composed of polymorphonuclear neutrophils, monocytes, macrophages, dendritic cells and early myeloid precursors. These MDSCs are thought to suppress anti-tumor T cell responses in both tumor tissues and secondary lymphoid tissues. Accumulation of MDSCs in these target tissues is a dynamic process associated with medullary and extramedullary myelopoiesis and subsequent cellular migration. Here, we review the current understanding of the cellular, molecular, hematological and anatomical principles of MDSC development and migration in tumor-bearing mice. We also discuss the therapeutic potential of chemokines that influence the balance between MDSC subpopulations.