Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Satoshi Ugi is active.

Publication


Featured researches published by Satoshi Ugi.


Molecular and Cellular Biology | 2004

Protein Phosphatase 2A Negatively Regulates Insulin's Metabolic Signaling Pathway by Inhibiting Akt (Protein Kinase B) Activity in 3T3-L1 Adipocytes

Satoshi Ugi; Takeshi Imamura; Hiroshi Maegawa; Katsuya Egawa; Takeshi Yoshizaki; Kun Shi; Toshiyuki Obata; Yousuke Ebina; Atsunori Kashiwagi; Jerrold M. Olefsky

ABSTRACT Protein phosphatase 2A (PP2A) is a multimeric serine/threonine phosphatase which has multiple functions, including inhibition of the mitogen-activated protein (MAP) kinase pathway. Simian virus 40 small t antigen specifically inhibits PP2A function by binding to the PP2A regulatory subunit, interfering with the ability of PP2A to associate with its cellular substrates. We have reported that the expression of small t antigen inhibits PP2A association with Shc, leading to augmentation of insulin and epidermal growth factor-induced Shc phosphorylation with enhanced activation of the Ras/MAP kinase pathway. However, the potential involvement of PP2A in insulins metabolic signaling pathway is presently unknown. To assess this, we overexpressed small t antigen in 3T3-L1 adipocytes by adenovirus-mediated gene transfer and found that the phosphorylation of Akt and its downstream target, glycogen synthase kinase 3β, were enhanced both in the absence and in the presence of insulin. Furthermore, protein kinase C λ (PKC λ) activity was also augmented in small-t-antigen-expressing 3T3-L1 adipocytes. Consistent with this result, both basal and insulin-stimulated glucose uptake were enhanced in these cells. In support of this result, when inhibitory anti-PP2A antibody was microinjected into 3T3-L1 adipocytes, we found a twofold increase in GLUT4 translocation in the absence of insulin. The small-t-antigen-induced increase in Akt and PKC λ activities was not inhibited by wortmannin, while the ability of small t antigen to enhance glucose transport was inhibited by dominant negative Akt (DN-Akt) expression and Akt small interfering RNA (siRNA) but not by DN-PKC λ expression or PKC λ siRNA. We conclude that PP2A is a negative regulator of insulins metabolic signaling pathway by promoting dephosphorylation and inactivation of Akt and PKC λ and that most of the effects of PP2A to inhibit glucose transport are mediated through Akt.


Molecular and Cellular Biology | 1999

G Alpha-q/11 Protein Plays a Key Role in Insulin-Induced Glucose Transport in 3T3-L1 Adipocytes

Takeshi Imamura; Peter Vollenweider; Katsuya Egawa; Martin Clodi; Kenichi Ishibashi; Naoki Nakashima; Satoshi Ugi; John W. Adams; Joan Heller Brown; Jerrold M. Olefsky

ABSTRACT We evaluated the role of the G alpha-q (Gαq) subunit of heterotrimeric G proteins in the insulin signaling pathway leading to GLUT4 translocation. We inhibited endogenous Gαq function by single cell microinjection of anti-Gαq/11 antibody or RGS2 protein (a GAP protein for Gαq), followed by immunostaining to assess GLUT4 translocation in 3T3-L1 adipocytes. Gαq/11 antibody and RGS2 inhibited insulin-induced GLUT4 translocation by 60 or 75%, respectively, indicating that activated Gαq is important for insulin-induced glucose transport. We then assessed the effect of overexpressing wild-type Gαq (WT-Gαq) or a constitutively active Gαq mutant (Q209L-Gαq) by using an adenovirus expression vector. In the basal state, Q209L-Gαq expression stimulated 2-deoxy-d-glucose uptake and GLUT4 translocation to 70% of the maximal insulin effect. This effect of Q209L-Gαq was inhibited by wortmannin, suggesting that it is phosphatidylinositol 3-kinase (PI3-kinase) dependent. We further show that Q209L-Gαq stimulates PI3-kinase activity in p110α and p110γ immunoprecipitates by 3- and 8-fold, respectively, whereas insulin stimulates this activity mostly in p110α by 10-fold. Nevertheless, only microinjection of anti-p110α (and not p110γ) antibody inhibited both insulin- and Q209L-Gαq-induced GLUT4 translocation, suggesting that the metabolic effects induced by Q209L-Gαq are dependent on the p110α subunit of PI3-kinase. In summary, (i) Gαq appears to play a necessary role in insulin-stimulated glucose transport, (ii) Gαq action in the insulin signaling pathway is upstream of and dependent upon PI3-kinase, and (iii) Gαq can transmit signals from the insulin receptor to the p110α subunit of PI3-kinase, which leads to GLUT4 translocation.


Journal of Clinical Investigation | 2001

Chronic endothelin-1 treatment leads to heterologous desensitization of insulin signaling in 3T3-L1 adipocytes

Kenichi Ishibashi; Takeshi Imamura; Prem M. Sharma; Jie Huang; Satoshi Ugi; Jerrold M. Olefsky

We recently reported that insulin and endothelin-1 (ET-1) can stimulate GLUT4 translocation via the heterotrimeric G protein G alpha q/11 and through PI3-kinase--mediated pathways in 3T3-L1 adipocytes. Because both hormones stimulate glucose transport through a common downstream pathway, we determined whether chronic ET-1 pretreatment would desensitize these cells to acute insulin signaling. We found that ET-1 pretreatment substantially inhibited insulin-stimulated 2-deoxyglucose uptake and GLUT4 translocation. Cotreatment with the ETA receptor antagonist BQ 610 prevented these effects, whereas inhibitors of G alpha i or G beta gamma were without effect. Chronic ET-1 treatment inhibited insulin-stimulated tyrosine phosphorylation of G alpha q/11 and IRS-1, as well as their association with PI3-kinase and blocked the activation of PI3-kinase activity and phosphorylation of AKT: In addition, chronic ET-1 treatment caused IRS-1 degradation, which could be blocked by inhibitors of PI3-kinase or p70 S6-kinase. Similarly, expression of a constitutively active G alpha q mutant, but not the wild-type G alpha q, led to IRS-1 degradation and inhibited insulin-stimulated phosphorylation of IRS-1, suggesting that the ET-1-induced decrease in IRS-1 depends on G alpha q/11 and PI3-kinase. Insulin-stimulated tyrosine phosphorylation of SHC was also reduced in ET-1 treated cells, resulting in inhibition of the MAPK pathway. In conclusion, chronic ET-1 treatment of 3T3-L1 adipocytes leads to heterologous desensitization of metabolic and mitogenic actions of insulin, most likely through the decreased tyrosine phosphorylation of the insulin receptor substrates IRS-1, SHC, and G alpha q/11.


Molecular and Cellular Biology | 2002

Protein Phosphatase 2A Forms a Molecular Complex with Shc and Regulates Shc Tyrosine Phosphorylation and Downstream Mitogenic Signaling

Satoshi Ugi; Takeshi Imamura; William Ricketts; Jerrold M. Olefsky

ABSTRACT Protein phosphatase 2A (PP2A) is a multimeric serine/threonine phosphatase that carries out multiple functions. Although numerous observations suggest that PP2A plays a major role in downregulation of the mitogen-activated protein (MAP) kinase pathway, the precise mechanisms are unknown. To clarify the role of PP2A in growth factor (insulin, epidermal growth factor [EGF], and insulin-like growth factor 1 [IGF-1]) stimulation of the Ras/MAP kinase pathway, simian virus 40 small t antigen was expressed in Rat-1 fibroblasts which overexpress insulin receptors. Small t antigen is known to specifically inhibit PP2A by binding to the A PP2A regulatory subunit, interfering with the ability of PP2A to bind to its cellular substrates. Overexpressed small t protein was coimmunoprecipitated with PP2A and inhibited cellular PP2A activity but did not inhibit protein phosphatase 1 (PP1) activity. Insulin, IGF-1, and EGF stimulation also inhibited PP2A activity. Growth factor-stimulated Ras, Raf-1, MAP kinase, and mitogen-activated extracellular-signal-regulated kinase kinase (MEK) activities were elevated in small-t-antigen-expressing cells. Furthermore, Shc tyrosine phosphorylation and its association with Grb2 were also elevated in small-t-antigen-expressing cells. Expression levels of Shc, Ras, MEK, or MAP kinase and phosphorylation of insulin, EGF, and IGF-1 receptors were not altered. Interestingly, we found that PP2A associated with Shc in the basal state and dissociated in response to insulin and EGF and that this dissociation was inhibited by 65% in small-t-antigen-expressing cells. In addition, we found that PP2A associates with the phosphotyrosine-binding domain (PTB domain) of Shc and that phosphorylation of tyrosine 317 of Shc was required for PP2A-Shc dissociation. We conclude (i) that PP2A negatively regulates the Ras/MAP kinase pathway by binding to Shc, inhibiting tyrosine phosphorylation; (ii) that the Shc-PP2A association is mediated by the Shc PTB domain but the interaction is independent of phosphotyrosine binding, indicating a new molecular function for the PTB domain; (iii) that growth factor stimulation, or small-t-antigen expression, causes dissociation of the PP2A-Shc complex, facilitating Shc phosphorylation and downstream activations of the Ras/MAP kinase pathway; and (iv) that this defines a new mechanism of small-t-antigen action to promote mitogenesis.


Journal of Biological Chemistry | 1999

Expression of a dominant negative SHP-2 in transgenic mice induces insulin resistance.

Hiroshi Maegawa; Masaaki Hasegawa; Satoshi Sugai; Toshiyuki Obata; Satoshi Ugi; Katsutaro Morino; Katsuya Egawa; Toshiki Fujita; Takahiko Sakamoto; Yoshihiko Nishio; Hideto Kojima; Masakazu Haneda; Hitoshi Yasuda; Ryuichi Kikkawa; Atsunori Kashiwagi

To elucidate the roles ofSHP-2, we generated transgenic (Tg) mice expressing a dominant negative mutant lacking protein tyrosine phosphatase domain (ΔPTP). On examining two lines of Tg mice identified by Southern blot, the transgene product was expressed in skeletal muscle, liver, and adipose tissues, and insulin-induced association of insulin receptor substrate 1 with endogenous SHP-2 was inhibited, confirming that ΔPTP has a dominant negative property. The intraperitoneal glucose loading test demonstrated an increase in blood glucose levels in Tg mice. Plasma insulin levels in Tg mice after 4 h fasting were 3 times greater with comparable blood glucose levels. To estimate insulin sensitivity by a constant glucose, insulin, and somatostatin infusion, steady state blood glucose levels were higher, suggesting the presence of insulin resistance. Furthermore, we observed the impairment of insulin-stimulated glucose uptake in muscle and adipocytes in the presence of physiological concentrations of insulin. Moreover, tyrosine phosphorylation of insulin receptor substrate-1 and stimulation of phosphatidylinositol 3-kinase and Akt kinase activities by insulin were attenuated in muscle and liver. These results indicate that the inhibition of endogenous SHP-2function by the overexpression of a dominant negative mutant may lead to impaired insulin sensitivity of glucose metabolism, and thusSHP-2 may function to modulate insulin signaling in target tissues.


Biochemical and Biophysical Research Communications | 2012

Autophagy regulates inflammation in adipocytes

Takeshi Yoshizaki; Chisato Kusunoki; Motoyuki Kondo; Mako Yasuda; Shinji Kume; Katsutaro Morino; Osamu Sekine; Satoshi Ugi; Takashi Uzu; Yoshihiko Nishio; Atsunori Kashiwagi; Hiroshi Maegawa

Autophagy is an essential process for both the maintenance and the survival of cells, with homeostatic low levels of autophagy being critical for intracellular organelles and proteins. In insulin resistant adipocytes, various dysfunctional/damaged molecules, organelles, proteins, and end-products accumulate. However, the role of autophagy (in particular, whether autophagy is activated or not) is poorly understood. In this study we found that in adipose tissue of insulin resistant mice and hypertrophic 3T3-L1 adipocytes autophagy was suppressed. Also in hypertrophic adipocytes, autophagy-related gene expression, such as LAMP1, LAMP2, and Atg5 was reduced, whereas gene expression in the inflammatory-related genes, such as MCP-1, IL-6, and IL-1β was increased. To find out whether suppressed autophagy was linked to inflammation we used the autophagy inhibitor, 3-methyladenine, to inhibit autophagy. Our results suggest that such inhibition leads to an increase in inflammatory gene expression and causes endoplasmic reticulum (ER) stress (which can be attenuated by treatment with the ER stress inhibitor, Tauroursodeoxycholic Acid). Conversely, the levels of inflammatory gene expression were reduced by the activation of autophagy or by the inhibition of ER stress. The results indicate that the suppression of autophagy increases inflammatory responses via ER stress, and also defines a novel role of autophagy as an important regulator of adipocyte inflammation in systemic insulin resistance.


Molecular and Cellular Biology | 2002

Insulin Induces Heterologous Desensitization of G Protein-Coupled Receptor and Insulin-Like Growth Factor I Signaling by Downregulating β-Arrestin-1

Stephane Dalle; Takeshi Imamura; David W. Rose; Dorothy Sears Worrall; Satoshi Ugi; Christopher J. Hupfeld; Jerrold M. Olefsky

ABSTRACT β-Arrestin-1 mediates agonist-dependent desensitization and internalization of G protein-coupled receptors (GPCRs) and is also essential for GPCR mitogenic signaling. In addition, insulin-like growth factor I receptor (IGF-IR) endocytosis is facilitated by β-arrestin-1, and internalization is necessary for IGF-I-stimulated mitogen-activated protein (MAP) kinase activation. Here, we report that treatment of cells for 12 h with insulin (100 ng/ml) induces an ∼50% decrease in cellular β-arrestin-1 content due to ubiquitination of β-arrestin-1 and proteosome-mediated degradation. This insulin-induced decrease in β-arrestin-1 content was blocked by inhibition of phosphatidylinositol-3 kinase (PI-3 kinase) and MEK with wortmannin and PD98059, respectively. We also found a marked decrease in the association of β-arrestin-1 with the IGF-IR and a 55% inhibition of IGF-I-stimulated MAP kinase phosphorylation. In insulin-treated, β-arrestin-1-downregulated cells, there was complete inhibition of lysophosphatidic acid (LPA) or isoproterenol (ISO)-stimulated MAP kinase phosphorylation. This was associated with a decrease in β-arrestin-1 association with the β2-AR as well as a decrease in β-arrestin-1-Src and Src-β2-AR association. Ectopic expression of wild-type β-arrestin-1 in insulin-treated cells in which endogenous β-arrestin-1 had been downregulated rescued IGF-I- and LPA-stimulated MAP kinase phosphorylation. In conclusion, we found the following. (i) Chronic insulin treatment leads to enhanced β-arrestin-1 degradation. (ii) This downregulation of endogenous β-arrestin-1 is associated with decreased IGF-I-, LPA-, and ISO-mediated MAP kinase signaling, which can be rescued by ectopic expression of wild-type β-arrestin-1. (iii) Finally, these results describe a novel mechanism for heterologous desensitization, whereby insulin treatment can impair GPCR signaling, and highlight the importance of β-arrestin-1 as a target molecule for this desensitization mechanism.


Biochemical and Biophysical Research Communications | 2013

Omega-3 polyunsaturated fatty acid has an anti-oxidant effect via the Nrf-2/HO-1 pathway in 3T3-L1 adipocytes

Chisato Kusunoki; Liu Yang; Takeshi Yoshizaki; Fumiyuki Nakagawa; Atsushi Ishikado; Motoyuki Kondo; Katsutaro Morino; Osamu Sekine; Satoshi Ugi; Yoshihiko Nishio; Atsunori Kashiwagi; Hiroshi Maegawa

Oxidative stress is produced in adipose tissue of obese subjects and has been associated with obesity-related disorders. Recent studies have shown that omega-3 polyunsaturated fatty acid (ω3-PUFA) has beneficial effects in preventing atherosclerotic diseases and insulin resistance in adipose tissue. However, the role of ω3-PUFA on adipocytes has not been elucidated. In this study, 3T3-L1 adipocytes were treated with ω3-PUFA and its metabolites, eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), or 4-hydroxy hexenal (4-HHE). ω3-PUFA and its metabolites dose-dependently increased mRNA and protein levels of the anti-oxidative enzyme, heme oxygenase-1 (HO-1); whereas no changes in the well-known anti-oxidant molecules, superoxide dismutase, catalase, and glutathione peroxidase, were observed. Knockdown of nuclear factor erythroid 2-related factor 2 (Nrf-2) significantly reduced EPA, DHA or 4-HHE-induced HO-1 mRNA and protein expression. Also, pretreatment with ω3-PUFA prevented H(2)O(2)-induced cytotoxicity in a HO-1 dependent manner. In conclusion, treatment with EPA and DHA induced HO-1 through the activation of Nrf-2 and prevented oxidative stress in 3T3-L1 adipocytes. This anti-oxidant defense may be of high therapeutic value for clinical conditions associated with systemic oxidative stress.


Biochemical and Biophysical Research Communications | 2010

Low concentration of 4-hydroxy hexenal increases heme oxygenase-1 expression through activation of Nrf2 and antioxidative activity in vascular endothelial cells.

Atsushi Ishikado; Yoshihiko Nishio; Katsutaro Morino; Satoshi Ugi; Hajime Kondo; Taketoshi Makino; Atsunori Kashiwagi; Hiroshi Maegawa

Large-scale clinical studies have shown that n-3 polyunsaturated fatty acids (n-3 PUFAs) such as eicosapentaenoic and docosahexaenoic acids reduce cardiovascular events without improving classical risk factors for atherosclerosis. Recent studies have proposed that direct actions of n-3 PUFAs themselves, or of their enzymatic metabolites, have antioxidative and anti-inflammatory effects on vascular cells. Although a recent study showed that plasma 4-hydroxy hexenal (4-HHE), a peroxidation product of n-3 PUFA, increased after supplementation of docosahexaenoic acid, the antiatherogenic effects of 4-HHE in vascular cells remain unclear. In the present study, we tested the hypothesis that 4-HHE induces the antioxidative enzyme heme oxygenase-1 (HO-1) through activation of nuclear factor erythroid 2-related factor 2 (Nrf2), a master regulatory transcriptional factor, and prevents oxidative stress-induced cytotoxicity in vascular endothelial cells. This mechanism could partly explain the cardioprotective effects of n-3 PUFAs. Human umbilical vein endothelial cells were stimulated with 1-10μM 4-HHE or 4-hydroxy nonenal (4-HNE), a peroxidation product of n-6 PUFAs. Both 4-HHE and 4-HNE dose-dependently increased HO-1 mRNA and protein expression, and intranuclear expression and DNA binding of Nrf2 at 5μM. Small interfering RNA for Nrf2 significantly reduced 4-HHE- or 4-HNE-induced HO-1 mRNA and protein expression. Furthermore, pretreatment with 4-HHE or 4-HNE prevented tert-butyl hydroperoxide-induced cytotoxicity. In conclusion, 4-HHE, a peroxidation product of n-3 PUFAs, stimulated expression of the antioxidant enzyme HO-1 through the activation of Nrf2 in vascular endothelial cells. This resulted in prevention of oxidative stress-induced cytotoxicity, and may represent a possible mechanism to partly explain the cardioprotective effects of n-3 PUFAs.


Journal of Biological Chemistry | 1996

Expression of Dominant Negative Mutant SHPTP2 Attenuates Phosphatidylinositol 3′-Kinase Activity via Modulation of Phosphorylation of Insulin Receptor Substrate-1

Satoshi Ugi; Hiroshi Maegawa; Atsunori Kashiwagi; Masaaki Adachi; Jerrold M. Olefsky; Ryuichi Kikkawa

To clarify the role of protein-tyrosine phosphatase (PTPase) containing Src homology 2 regions (SHPTP2) in insulin signaling, either wild-type or mutant SHPTP2 (ΔPTP; lacking full PTPase domain) was expressed in Rat 1 fibroblasts overexpressing human insulin receptors. In response to insulin, phosphorylation of insulin receptor substrate 1 (IRS-1), IRS-1-associated PTPase activities and phosphatidylinositol (PI) 3′-kinase activities were slightly enhanced in wild-type cells when compared with those in the parent cells transfected with hygromycin-resistant gene alone. In contrast, introduction of ΔPTP inhibited insulin-induced association of IRS-1 with endogenous SHPTP2 and impaired both insulin-stimulated phosphorylation of IRS-1 and activation of PI 3′-kinase. Furthermore, decreased content of p85 subunit of PI 3′-kinase was also found in mutant cells. Consistently, the insulin-stimulated mitogen-activated protein kinase activities and DNA synthesis were also enhanced in wild-type cells, but impaired in mutant cells. Thus, the interaction of SHPTP2 with IRS-1 may be associated with modulation of phosphorylation levels of IRS-1, resulting in the changes of PI 3′-kinase and mitogen-activated protein kinase activity. Furthermore, an impaired insulin signaling in mutant cells may be partly reflected in a decreased content of p85 protein of PI 3′-kinase.

Collaboration


Dive into the Satoshi Ugi's collaboration.

Top Co-Authors

Avatar

Hiroshi Maegawa

Shiga University of Medical Science

View shared research outputs
Top Co-Authors

Avatar

Atsunori Kashiwagi

Shiga University of Medical Science

View shared research outputs
Top Co-Authors

Avatar

Katsutaro Morino

Shiga University of Medical Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Osamu Sekine

Shiga University of Medical Science

View shared research outputs
Top Co-Authors

Avatar

Shinji Kume

Shiga University of Medical Science

View shared research outputs
Top Co-Authors

Avatar

Takashi Uzu

Shiga University of Medical Science

View shared research outputs
Top Co-Authors

Avatar

Takeshi Yoshizaki

Shiga University of Medical Science

View shared research outputs
Top Co-Authors

Avatar

Takeshi Imamura

Japanese Foundation for Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Shin-ichi Araki

Shiga University of Medical Science

View shared research outputs
Researchain Logo
Decentralizing Knowledge